scholarly journals IMPLEMENTATION BASED ON 0.18 µM CMOS TECHNIQUES FOR DIGITAL PLL SYNTHESIZER IN LOW LOCKING TIME

Synthesizer suggests the chief feature element of clocking around modern-day high-speed energy systems. Every time appreciated seeing that for a phase-locked land (PLL), numbers synthesizers illustrate fantastic precision and even now let general object rendering linked with programmable numbers switching. While doing this dissertation lots of people deliver a certainly better model linked with Steadiness synthesizer coupled with focused on ugly Steadiness synthesizers implementing An electronic digital PLL. A persons vision might be globally placing and also specifications because of the straightforward varieties in the An electronic digital PLL: phase-frequency system, bill tubing, land purification technique, present-day dictated oscillator (VCO) coupled with programmable divider. This particular emulator achievement in the An electronic digital PLL implementing perhaps the most common 0.18µd CMOS technology around Piquance illustrate a fast wrapping up effort frame tremendous numbers range. This particular acquire length of time could be tailored via altering ones own bill tubing latest also,the land purification technique capacitor. PFD (Phase Steadiness Detector) marketplace forestalling deviation in the bill tubing marketplace under the founded problem might be designed. That comprehension of the LPF needs the published research within the land individual in the PLL. Encapsulating the perfect tradeoffs for illustration acquire alter, acquire an important portions of knowledge switch cost, this will likely often be simply just ones own tricky obstruct so that you can design. To acquire wider production numbers concentrating on alter, bigger capacitance is vital (i.e., great area). Which will boost the occasionally keeps going free of boost laptop computer food put usage, The project acknowledges some form of voltage-controlled oscillator (VCO) implementing a diamond ring diamond ring linked with single-ended current-starved oscillator can present tremendous jogging frequencies.

2018 ◽  
Vol 7 (4.10) ◽  
pp. 81
Author(s):  
Prithiviraj R ◽  
Selvakumar J

Design of Phase Locked Loop (PLL) plays a vital role in transceiver field. Phase Locked Loop comprises of three blocks, namely Phase and frequency detector, loop filter and voltage-controlled oscillator. The greater advancements in CMOS technology such as high frequency, high speed, low noise and phase error leads to low-cost PLL This work aims to develop higher order non-linear models of general Phase Locked Loop. The condition of stability and choice of loop filter is also determined. Based on the analysis, the transfer function for PLL is determined.  


2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1873
Author(s):  
Chen Cai ◽  
Xuqiang Zheng ◽  
Yong Chen ◽  
Danyu Wu ◽  
Jian Luan ◽  
...  

This paper presents a fully integrated physical layer (PHY) transmitter (TX) suiting for multiple industrial protocols and compatible with different protocol versions. Targeting a wide operating range, the LC-based phase-locked loop (PLL) with a dual voltage-controlled oscillator (VCO) was integrated to provide the low jitter clock. Each lane with a configurable serialization scheme was adapted to adjust the data rate flexibly. To achieve high-speed data transmission, several bandwidth-extended techniques were introduced, and an optimized output driver with a 3-tap feed-forward equalizer (FFE) was proposed to accomplish high-quality data transmission and equalization. The TX prototype was fabricated in a 28-nm CMOS process, and a single-lane TX only occupied an active area of 0.048 mm2. The shared PLL and clock distribution circuits occupied an area of 0.54 mm2. The proposed PLL can support a tuning range that covers 6.2 to 16 GHz. Each lane's data rate ranged from 1.55 to 32 Gb/s, and the energy efficiency is 1.89 pJ/bit/lane at a 32-Gb/s data rate and can tune an equalization up to 10 dB.


2021 ◽  
Vol 11 (1) ◽  
pp. 429
Author(s):  
Min-Su Kim ◽  
Youngoo Yang ◽  
Hyungmo Koo ◽  
Hansik Oh

To improve the performance of analog, RF, and digital integrated circuits, the cutting-edge advanced CMOS technology has been widely utilized. We successfully designed and implemented a high-speed and low-power serial-to-parallel (S2P) converter for 5G applications based on the 28 nm CMOS technology. It can update data easily and quickly using the proposed address allocation method. To verify the performances, an embedded system (NI-FPGA) for fast clock generation on the evaluation board level was also used. The proposed S2P converter circuit shows extremely low power consumption of 28.1 uW at 0.91 V with a core die area of 60 × 60 μm2 and operates successfully over a wide clock frequency range from 5 M to 40 MHz.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.


2013 ◽  
Vol 385-386 ◽  
pp. 1278-1281 ◽  
Author(s):  
Zheng Fei Hu ◽  
Ying Mei Chen ◽  
Shao Jia Xue

A 25-Gb/s clock and data recovery (CDR) circuit with 1:2 demultiplexer which incorporates a quadrature LC voltage-controlled-oscillator and a half-rate bang-bang phase detector is presented in this paper. A quadrature LC VCO is presented to generate the four-phase output clocks. A half-rate phase detector including four flip-flops samples the 25-Gb/s input data every 20 ps and alignes the data phase. The 25-Gb/s data are retimed and demultiplexed into two 12.5-Gb/s output data. The CDR is designed in TSMC 65nm CMOS Technology. Simulation results show that the recovered clock exhibits a peak-to-peak jitter of 0.524ps and the recovered data exhibits a peak-to-peak jitter of 1.2ps. The CDR circuit consumes 121 mW from a 1.2 V supply.


2022 ◽  
Vol 17 (01) ◽  
pp. C01040
Author(s):  
C. Zhao ◽  
D. Guo ◽  
Q. Chen ◽  
N. Fang ◽  
Y. Gan ◽  
...  

Abstract This paper presents the design and the test results of a 25 Gbps VCSEL driving ASIC fabricated in a 55 nm CMOS technology as an attempt for the future very high-speed optical links. The VCSEL driving ASIC is composed of an input equalizer stage, a pre-driver stage and a novel output driver stage. To achieve high bandwidth, the pre-driver stage combines the inductor-shared peaking structure and the active-feedback technique. A novel output driver stage uses the pseudo differential CML driver structure and the adjustable FFE pre-emphasis technique to improve the bandwidth. This VCSEL driver has been integrated in a customized optical module with a VCSEL array. Both the electrical function and optical performance have been fully evaluated. The output optical eye diagram has passed the eye mask test at the data rate of 25 Gbps. The peak-to-peak jitter of 25 Gbps optical eye is 19.5 ps and the RMS jitter is 2.9 ps.


Sign in / Sign up

Export Citation Format

Share Document