scholarly journals Optimum Welding Parameters for Friction Stir Welded AA6063 Pipe Butt Joint Using the Taguchi Method

2021 ◽  
Vol 10 (2) ◽  
pp. 404-413
Author(s):  
Azman Ismail ◽  
Fatin Nur Zulkipli ◽  
Mokhtar Awang ◽  
Fauziah Ab Rahman ◽  
Puteri Zarina Megat Khalid ◽  
...  

Welding parameters for pipe joint friction stir welding (FSW) have been identified based on L-9 orthogonal arrays used in the Taguchi Method. Different welding parameters, such as rotation speed, travel speed and axial force, have been used to produce several quality friction stir welded AA6063 pipe butt joints. The reliability of products obtained in the FSW process can be improved through the identification of the optimum combination of welding parameters. Weld quality was evaluated based on its tensile strength and residual stress profiles. The S/N analysis and Analysis of Variance (ANOVA) have been used to determine significant welding parameters that affect weld quality. Maximum tensile strength with acceptable residual stress was obtained at the optimum welding parameters of 1300 rpm, 5 mm/s and axial force between 5 and 6 kN. The goal of this study was to optimize welding parameters for high tensile strength and low residual stress.

2017 ◽  
Vol 867 ◽  
pp. 97-104 ◽  
Author(s):  
T. Ganapathy ◽  
K. Lenin ◽  
K. Pannerselvam

This paper deals with the effective application of friction stir welding similar to butt joining technique.AL6063 T-6 alloys prepared in 125x 100 x 7mm thickness plate and FSW tool setup were H13 of diameter 25mm rotary tool with straight cylindrical pin profile. The maximum strength was considered for selection of combined process parameter. The process parameters were optimized using Taguchi method. The Rotational speed, welding speed, and axial speed are the main process parameter which taken into our consideration. The optimum process parameters are determined with reference to tensile strength of the joint. From the experiments, it was found the effects of welding parameter are the axial force is highest substantial parameter to determining the tensile strength of the joint. The paper which revealed the optimal values of process parameter are to acquire a maximum tensile strength of friction stir welded AL6063-T6 plates is 101.6Mpa with the combination level of rotational speed, welding speed and axial force are found to be 1100 RPM, 60 mm/min and 12.5 KN. validation test was carried out and results were nearer to the optimized results confirmed by the optimum results.


2016 ◽  
Vol 49 (6) ◽  
pp. 498-512 ◽  
Author(s):  
Ali Doniavi ◽  
Saeedeh Babazadeh ◽  
Taher Azdast ◽  
Rezgar Hasanzadeh

Although considerable progress has been made in recent years in field of polymer welding, challenges still remain in using a friction stir welding method to join polycarbonate (PC) composites. This research provides an investigation on the effect of welding parameters (tool’s travel and rotational speeds) on mechanical properties of PC nanocomposite weld lines. PC nanocomposites were prepared with different percentages of Al2O3 nanofiller using a twin screw extruder and injection moulded as sheets in order to ease the welding. Considering various parameters and their levels, optimization of Taguchi experimental design was carried out, an L16 orthogonal standard array was selected and the effective parameter was calculated using analysis of variance of the results. The results indicated that nanoalumina percentage is the most effective parameter on the tensile strength of weld and tool’s travel speed and rotational speed are next effective parameters, respectively. According to signal-to-noise ratio, maximum weld tensile strength (89.5% of base material) is revealed when nanoalumina percentage, tool’s travel speed and tool’s rotational speed were chosen as 1 wt%, 12 mm/min and 1250 r/min, respectively.


Author(s):  
M.A. Unnikrishnan ◽  
J. Edwin Raja Dhas

In this paper, the Taguchi method and grey relational analysis have been used to evaluate the weldability of AZ91B Magnesium alloy by friction stir welding process. Experiments were conducted using the L9 Taguchi design considering an orthogonal array consist of 3 factors and 3 levels. The rotational speed, transverse speed and angle of tilt of the tool are selected as welding parameters. Analysis of variance (ANOVA) is used to analyze the influence of the welding parameters on the responses namely, ultimate tensile strength (UTS) and hardness. The analysis results revealed that the transverse speed is the predominant parameter affecting tensile strength, hardness and quality of the weld. Confirmation test results showed that the Taguchi method coupled with grey relational analysis is very successful in the optimization of welding parameters for maximum strength and hardness in the FSW of AZ91B Magnesium alloy.


2016 ◽  
Vol 836 ◽  
pp. 208-213
Author(s):  
Widia Setiawan ◽  
Djarot B. Darmadi ◽  
Wahyono Suprapto ◽  
Rudy Sunoko

Aluminium 6061 was joined by friction stir welding (FSW) with new surface preparation on corner design. The distribution micro structure in Corner-joints was tool welded rotation (rpm), and travel speed (mm/mnt) observed and analyzed. The welding parameters observing the tensile strength, micro structure and micro hardness it can be said. The result structure micro are homogen whilst from tensile test the strength joint is quilt good even better from preview publihsed papers. The obtained with the transverse speed 15 mm/menit, and 1500 rpm.


2010 ◽  
Vol 636-637 ◽  
pp. 1150-1156 ◽  
Author(s):  
Rui Louro ◽  
Carlos Leitão ◽  
Helena Gouveia ◽  
Altino Loureiro ◽  
Dulce Maria Rodrigues

The task of obtaining suitable welding parameters for the friction stir welding process is often a difficult one, due to the lack of published data and the fact that the exact mechanism by which the process operates has not yet been fully determined. Therefore, suitable welding parameters often need to be obtained by using extensive, time consuming and expensive experimental methods. The work detailed in this paper pertains to the use of the Taguchi method as a mean to reduce the disadvantages of these experimental methods, more specifically, their cost. The Taguchi method accomplishes this task by substantially reducing the number of welding trials that are needed to obtain suitable welding parameters. This reduction leads to the parameters being obtained more rapidly and at a substantially smaller cost. In this paper a procedure for applying the Taguchi method to the friction stir welding process is presented as well as its application to the welding of a specific component. The method was applied to the welding of 4mm thick AA5083-H111 plates in a butt joint configuration, which constitutes one of the most common industrial welding scenarios. The purpose of the experimental tests was to maximize the welding speed whilst ensuring an acceptable welding quality. The quality of the welds was determined through visual inspection and tensile and bending tests. The application of the Taguchi method allowed, with a relatively small number of experimental welds, to provide some insight into the manner by which the parameters should be altered in order to optimize the process.


2014 ◽  
Vol 974 ◽  
pp. 408-412 ◽  
Author(s):  
Mohamed Ackiel Mohamed ◽  
Yupiter HP Manurung ◽  
Mohammad Ridzwan Abdul Rahim ◽  
Norasiah Muhammad ◽  
Farizah Adliza Ghazali

This paper presents an unconventional method to optimize the governing process parameters of Friction Stir Welding (FSW) towards the mechanical properties and weld quality. The optimization approach attempts to consider simultaneously the multiple quality characteristics namely tensile strength, nugget zone hardness and weld quality class using Multi-objective Taguchi Method (MTM). The experimental study was conducted for plate thickness of 6.0 mm under different rotational and traverse speed. The optimum welding parameters were investigated using Taguchi method with L9 orthogonal array. The significant level of the welding parameters is to be investigated by using analysis of variance (ANOVA). Furthermore, the optimum value was analyzed by means of MTM which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR).


2019 ◽  
Vol 7 (1) ◽  
pp. 17-23
Author(s):  
Azzam Sabah Albunduqee ◽  
Hussein R Al-Bugharbee

Friction Stir Welding is one of the technologies of joining solid states, which still attracts the researchers’ interest.  In welded joints the mechanical properties are affected by a number of mechanical properties of the joined materials and by the process parameters as well. In the present study, the effect of a number of friction stir welding parameters on the tensile strength of the welded joint have been investigated using the Taguchi method and the analysis of variance (ANOVA). The study considers different levels of friction stir welding variables; namely, different rotational speeds of (2000, 1600, 1250 rpm), different welding speeds (12.5, 16, 20 mm / min), and different welding tilt angles (0, 1, 2 degrees).  The optimum process parameters and their contribution rate were selected based on the Taguchi method for test design and by using the Minitab 16 program. In this study, the best results (i.e, higher tensile strength) were obtained at a rotational velocity of 1600 rpm, linear velocity of 16 mm / min, and welding angle, 1o. The highest tensile strength was obtained under these conditions.                                                                                       


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


Sign in / Sign up

Export Citation Format

Share Document