Analysis of Electromagnetic Wave for Spark Plug Cable in Distributorless Spark Ignition System

Author(s):  
Sang-Won Kang ◽  
Gwang-Je Choe ◽  
Jung Hur
Author(s):  
Haiwen Ge ◽  
Peng Zhao

In the present paper, a comprehensive ignition system model (VTF ignition model) accounting for the practical module and working mechanism of a spark plug was developed, aiming to provide enhanced capability for the 3D combustion simulation of spark ignition engines. In this model, an electrical circuitry model is used to represent the ignition coil, spark plug, and air column. The air column is represented by a set of Lagrangian particles that move with the local flow field. Flame propagation is directly calculated using SAGE model with a reduced isooctane reaction mechanism. The new ignition system model is further implemented into CONVERGE through user defined functions and is verified by comparing with the conventional DPIK model. It is found that the VTF ignition model predicts slower combustion than the DPIK model, mainly due to more realistic energy deposit method and energy discharging rate. Furthermore, the VTF model also has the capability of predicting the arc motion and restrike phenomena associated with spark ignition processes. It is expected that with more validation with experiments, the new VTF model has the great potential to better serve the needs of engine combustion simulation.


Author(s):  
By R. C. Teasel ◽  
R. D. Miller

The increasing use of spark ignition engines throughout the world has confronted the engine designer with new problems such as air pollution, world-wide temperature extremes, as well as legislative, economic, and human considerations. To meet these situations and improve the competitive position of the spark ignition engine requires considerable research and development effort. This paper reports on work conducted by Champion Spark Plug Company in attempting to evaluate the potential contribution that ignition system and spark plug designs can make towards improving spark ignition engine operation. Almost all the work reported here covers investigations in current large displacement United States passenger car engines. The three main characteristics of the overall ignition systems that are investigated are (1) the available output voltage characteristics of the ignition systems; (2) the effect of the ignition system spark discharge characteristics on engine performance; and (3) the effect of several spark plug design features on engine performance. This investigation shows that the inter-relationship of the ignition system spark discharge characteristics and the spark plug design requires that the overall evaluation must consider the dependence of both items. It also suggests that significant improvements can result in other United States and European engines, through the careful evaluation of ignition system and spark plug designs. The results of this work indicate that a fast rise time, short arc duration system results in reduced spark plug gap growth and better resistance to spark plug fouling. However, the arc duration must not be shorter than a minimum value, or a loss in engine performance may result. High output systems are desirable as they provide a higher voltage reserve to provide longer spark plug life, but the higher voltages that occur with the larger spark plug gaps can stress other ignition system components. The spark plug designs which incorporate a projection of the spark plug gap result in better performance in the engines tested, and possibly even reduce exhaust emissions. Certainly other features which engine manufacturers must consider, which are not discussed in detail here, are costs, durability, and maintenance of the new systems. At least one other important related problem is that of interference.


2021 ◽  
Vol 232 ◽  
pp. 111561
Author(s):  
Rajavasanth Rajasegar ◽  
Yoichi Niki ◽  
Jose Maria García-Oliver ◽  
Zheming Li ◽  
Mark P.B. Musculus

Author(s):  
A. K. Chan ◽  
S. H. Waters

An ignition system that is based on the alternating (AC) rather than the traditional direct (DC) current in the spark plug discharge has been developed at the Caterpillar Technical Center. This system can generate a long duration discharge with controllable power. It is believed that such an ignition system can provide both a leaner operating limit and a longer spark plug life than a traditional DC system due to the long discharge duration and the low discharge power. The AC ignition system has successfully been tested on a Caterpillar single cylinder G3500 natural gas engine to determine the effects on the engine performance, combustion characteristics and emissions. The test results indicate that while the AC ignition system has only a small impact on engine performance (with respect to a traditional DC system), it does extend the lean limit with lower NOx emissions. Evidences also show the potential of reduce spark plug electrode erosions from the low breakdown and sustaining discharge powers from the AC ignition system. This paper summarizes the prototype design and engine demonstration results of the AC ignition system.


2016 ◽  
Vol 819 ◽  
pp. 272-276 ◽  
Author(s):  
Ali Ghanaati ◽  
Mohd Farid Muhamad Said ◽  
Intan Zaurah Mat Darus ◽  
Amin Mahmoudzadeh Andwari

The performance of Spark Ignition (SI) engines in terms of thermal efficiency can be restricted by knock. Although it is common for all SI engines to exhibit knock from compressed end-gas, knocks from surface ignition remains a more serious problem due to its effect on combustion stability and its obscurity to detect. This paper focuses on predicting the occurrence of knocks from surface ignition by monitoring exhaust gas temperature (EGT). EGT measured during an engine cycle without the spark plug firing. Therefore, EGT rises illustrated any combustion made by surface ignition. Modelling and simulation of a one-dimensional engine combustion done by using GT-Power. The new approach reduces the complexity as EGT monitoring does not require high computational demands, and the EGT signals are robust to noise. The method is validated against a variety of fuel properties and across engine conditions. A new approach is proposed as a measure to predict and detect the knock events.


2017 ◽  
Author(s):  
Xiao Yu ◽  
Shui Yu ◽  
Zhenyi Yang ◽  
Qingyuan Tan ◽  
Mark Ives ◽  
...  

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Sebastian Różowicz

Abstract The paper presents the results of analytical and experimental studies concerning the influence of different kinds of fuel additives on the quality of the spark discharge for different configurations of the ignition system. The wear of the spark plug electrode and the value of spark discharge were determined for various impurities and configurations of the air-fuel mixture.


2022 ◽  
Vol 119 (1) ◽  
pp. 189-199
Author(s):  
A. A. Azrin ◽  
I. M. Yusri ◽  
M. H. Mat Yasin ◽  
A. Zainal

Sign in / Sign up

Export Citation Format

Share Document