scholarly journals Assessment of Irrigation Water Quality of Kosovo Plain

2017 ◽  
Vol 17 (3) ◽  
pp. 243
Author(s):  
Smajl Rizani ◽  
Perparim Laze ◽  
Alban Ibraliu

The study aims to assess the quality of irrigation water of the Kosovo Plain. Twelve water samples were collected from sampling points in the peak of dry season in July 2015. Samples were taken from rivers, canals and pumping stations. The contents of the samples have been analyzed. The classification used to assess qualities and the suitability of irrigation water is based on FAO’s and USSL’s classification criteria of irrigation water. The study revealed that important constituents which influence the quality of irrigation water such as: electrical conductivity, total dissolved solids, sodium adsorption ratio, soluble sodium percentage, residual sodium bicarbonate, permeability index and Kelly’s ratio, were found within the permissible limits of water for irrigation purposes. Therefore, the surface water of this area is deemed to be of an excellent quality and its use is highly recommended for the irrigation of crops.

1970 ◽  
Vol 34 (4) ◽  
pp. 507-608 ◽  
Author(s):  
MS Islam ◽  
SZKM Shamsad

Some important physio-chemical parameters of surface and groundwater of Bogra District were evaluated for the criteria of irrigation water quality. Forty four water samples were collected in the peak dry season (December-April) from different areas of Bogra District. The study revealed that temperature, pH, electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), total hardness (Ht) and Kelly’s ratio of waters were found within the permissible limits for irrigation purposes. Any initiative for surface and groundwater development for planned irrigation practices is highly encouraged. Key Words: Irrigation water (surface and groundwater); quality; Bogra District. DOI: 10.3329/bjar.v34i4.5836Bangladesh J. Agril. Res. 34(4) : 597-608, December 2009


2021 ◽  
Vol 7 (9) ◽  
pp. 1515-1528
Author(s):  
Hazir S. Çadraku

Groundwater is an important source for a drink and irrigation in the Blinaja river basin. Understanding knowledge of irrigation water quality is critical to the management of water for long-term productivity. Historically for this study area there is no data and information regarding the quality and use of water for irrigation needs. Therefore, there was a need to assess water quality based on data analysed from eight sampling points. The purpose of this paper is to evaluate, relying on analytical results, the quality of groundwater in the Blinaja river basin for the purpose of its use for irrigation of agricultural crops. For this purpose, in the Blinaja River Basin in different months during 2015, 2016, 2018 and 2019, 28 water samples were taken to assess the quality of groundwater for irrigation. Water samples were analysed in a laboratory for some of the key quality indicators; pH, EC, hardness (TH), Ca, Mg, Na, K, HCO3, SO4, Cl, etc. and then irrigation water quality indices were calculated such as: percentage of Na (% Na), SAR (Sodium Adsorption Ratio), PI (Permeability index), KR (Kelly's ratio), etc. The overall objective of this study was to assess the quality of water to be used by the inhabitants of the area for irrigation of agricultural crops. Analytical procedures for the laboratory determinations of water quality have been given in several publications (USDA Handbook 60 by Richards, 1954; FAO Soils Bulletin 10 by Dewis and Freitas1970; APHA 2005). Doi: 10.28991/cej-2021-03091740 Full Text: PDF


2021 ◽  
pp. 85-101
Author(s):  
Stanko Milic ◽  
Dusana Banjac ◽  
Jovica Vasin ◽  
Jordana Ninkov ◽  
Borivoj Pejic ◽  
...  

Intensive crop cultivation systems require continuous monitoring of irrigation water quality as well as the control of physical and chemical soil properties. In view of the ongoing climate change and a dramatic decrease in soil organic matter content, the use of low quality irrigation water and its adverse effects on soil, cultivated plants and irrigation equipment must not be overlooked. The aim of this paper was to evaluate general quality of irrigation water from the different water intake sources in the Vojvodina Province. The paper presents the results of irrigation water quality, collected during 2018 and 2019. The research included 140 irrigation water samples obtained from three different intake structures which collect water from wells, canals or reservoirs. Water quality was assessed using the following parameters: pH value, electrical conductivity (EC), total dissolved solids (TDS), ionic balance, sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) value. Water quality diagram given by the US Salinity Laboratory (USSL) and FAO guidelines for interpretation water quality for irrigation was used. Additionally, the Nejgebauer classification for irrigation water, developed specifically for the area of Vojvodina, was used as a third classification. Based on the results of mineralization of the irrigation water, the following values of the observed parameters were determined: average pH of the analyzed water samples were 7.89, ranged from 7.14 to 9.01, while electrical conductivity values ranged from 0.10 to 3.50 dS/m, with an average of 0.85 dS/m. TDS analysis resulted in a wide range of values, from 112 mg/l to 2,384 mg/l, with an average of 529,22 mg/l. SAR values varied between 0.04-16.52 with a satisfactory average of 1.97. The USSL water classification produced similar results as FAO classification and RSC index <0, indicating that 57% of investigating samples are without concerns for irrigation use, whereas Nejgebauers classification and RSC index 0-1.25 show that over 75% of analyzed samples are suitable and safe for irrigation and soil properties. Since the quality of irrigation water significantly affects plant productivity, as it determines the chemical and physical properties of agricultural land, monitoring of water quality for irrigation is of high importance.


2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Saloom & Oleiwi

As a result of different quality standards for irrigation water and the varying ion composition, and the fact that classification of irrigation water consists of large and complex data, this study was conducted in order to find a way for combining the complex water quality data into a single value, a quality of irrigation water index (IWQI) which reflects the suitability of the water quality for irrigation. Irrigation water quality variables were divided into five groups according to Food and Agriculture Organization FAO guide. The order of the parameters were, Salinity expressed in electrical conductivity (EC), Sodium adsorption ratio (SAR), Toxicity of specific ions (boron, chloride, sodium, Toxic trace elements and Miscellaneous effects on sensitive crops (nitrates and bicarbonates and pH). Linear equations of each variable and the formulation of mathematical equations had been done to convert the actual concentration values in the classification adopted to estimate the values of the indicators (sub-indices) and then converting the actual values and different units for each variable to the estimated values under the general scheme consists of grades between (0 -100). For the purpose of calculating irrigation water quality index, a software was originated entitled IWQI program was applied to the data of the irrigation water samples for eighteen (18) locations of water sampling in the rivers: Tigris, Euphrates, Diyala and Shatt al-Arab. Results showed that the values of irrigation water quality index for the period March to December 2015 of the Tigris River were highest than the values of Euphrates River at all locations from the north to the south as it was estimated 94.38 and 88.6 in Muthana bridge site (Tigris) and sader Al- Yusufiya (Euphrates), respectively in Baghdad and reached 74.55 and 67.78 in Qurna (Tigris) and Qurna (Euphrates), respectively. Irrigation water quality index of Shatt al-Arab was at the site of Altnoma 39.78 and classified as almost unsuitable. In Diyala River, it has been observed that the impact of Rustumiya weste water station in reducing the quality of irrigation water quality index was relatively low and water in the two sites (before and after Rustumiya station) are classified as moderately suitable.


2019 ◽  
Vol 9 (1) ◽  
pp. 87
Author(s):  
I GUSTI NGURAH SANTOSA ◽  
I PUTU DHARMA

Suitability of Irrigation Water Quality for Rice in Mambal Irrigation Area. Mambal irrigation area is located in southern region of Bali, close by urban area. It consists of 42 Subak which covered 4.820 ha.  However, the total area that still exists today is only 2.978 ha, and it is considered potential in increasing rice production and supplying rice in order to support food self-sufficiency in Bali. The increase of population is considered as the factor of wetland conversion because, the growth of population leads to variety of purposes such as shelter (housing), tourism/hotel, accommodation, business/home industry, livestock, public facilities, etc. Therefore, the activities done on the wetland conversion area automatically changed. That activity on conversion area consequences in both liquid or solid waste, and it is often discharged into rivers or irrigation channels. Consequently, it may cause irrigation water pollution. Poor quality of irrigation water can endangering rice plant growth and reduce the production, which means blocking or inhibiting food self-sufficiency.  This study is considered as field and laboratory research.  There are some field activities done, namely observation of the pollution sources and types of pollutants, as well as waste disposal mechanisms and technologies used to tackle pollution. In order to determine the quality of irrigation water, the water samples taken in the primary channel (1 water sample), secondary channel (1 water sample), tertiary channel (1 water sample), and field area (3 samples of water). All water samples are analyzed at the Analytical Laboratory of Udayana University.  The results of the study are the sources of pollution come from channel natural environments, public facilities, housing and household waste. It was found that there are some types of waste, namely natural garbage, artificial garbage, liquid or solid waste in small amount. The mechanism of waste disposal is done conventionally and there is no application of technology of waste disposal. The outcome of the study is irrigation water quality for rice is still suitable for irrigation.


2018 ◽  
Vol 31 (2) ◽  
pp. 108
Author(s):  
Sari Mukti Rohmawati ◽  
Sutarno Sutarno ◽  
Mujiyo Mujiyo

<div class="WordSection1"><p><em>Subdistrict Kebakkaramat was the region with the most extensive area of rice fields and the highest rice production, in addition to the Subdistricts Kebakkramat a number of industrial areas with the greatest number two after Jaten Subdistricts. Industry in the Subdistrict Kebakkramat is dominated by the textile industry and agriculture are mostly located in areas suspected of liquid waste that contaminate irrigation water for paddy soil. Pollution caused by industrial waste, will reduce the quality of irrigation water. The purpose of this study was to determine the quality of irrigation water in the industrial area Subdistricts Kebakkaramat. This research used descriptive quantitative method implemented through field surveys and continued by laboratorium analysis. Observation variables of the quality of irrigation water include temperature, TDS, pH, DHL, DO, nitrate and metals Cr. The results showed that the TDS, pH, DHL, DO and nitrate water still in suitable with the irrigation water quality standards according to Government Regulation No. 82 of 2001, while the temperature in point 5 does not correspond to irrigation water quality standard. Cr at all observation points, except the control does not correspond to irrigation water quality standard, that exceeds a predetermined limit is 0.01 ppm.</em></p></div>


2018 ◽  
Vol 18 (1) ◽  
pp. 9-19
Author(s):  
Asare Asante-Annor ◽  
P. N. Bewil ◽  
D. Boateng

The populace of the Lambussie-Karni District are mainly farmers who have resorted to the use of groundwater for irrigation during the dry season because of long drought and inadequate surface water bodies. The temporal variation of the groundwater quality for irrigation in the District was assessed using sixteen boreholes. Richard Plot indicates that groundwater in the study area is within the low salinity to low sodium hazard and medium salinity to low sodium hazard class. Wilcox Plot shows groundwater to be within excellent to good class in the catchment. Irrigation water quality index (IWQI) map was also developed to determine precisely the degree and areal extent of groundwater suitability for irrigation. ArcGIS 10.1 was used to generate thematic maps for sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), sodium percentage (Na %), HCO3-, pH and electrical conductivity. The results were compared to Food and Agricultural Organisations (FAO) standard guidelines. An IQWI map for the Lambussie- Karni District shows that groundwater is generally suitable for irrigation, about 24.57 % of the district will require crops which can tolerate high amount of salts. A percentage (39.82 %) of the catchment has groundwater, which is highly suitable for crops which are least resistant to salt. Keywords: Groundwater Suitability; Irrigation Water Quality; SAR; IWQI Map; Lambussie-Karni District


2013 ◽  
Vol 33 (5) ◽  
pp. 1024-1037 ◽  
Author(s):  
Suzana C. Wrublack ◽  
Erivelto Mercante ◽  
Marcio A. Vilas Boas

The objective of this study consisted on mapping the use and soil occupation and evaluation of the quality of irrigation water used in Salto do Lontra, in the state of Paraná, Brazil. Images of the satellite SPOT-5 were used to perform the supervised classification of the Maximum Likelihood algorithm - MAXVER, and the water quality parameters analyzed were pH, EC, HCO3-, Cl-, PO4(3-), NO3-, turbidity, temperature and thermotolerant coliforms in two distinct rainfall periods. The water quality data were subjected to statistical analysis by the techniques of PCA and FA, to identify the most relevant variables in assessing the quality of irrigation water. The characterization of soil use and occupation by the classifier MAXVER allowed the identification of the following classes: crops, bare soil/stubble, forests and urban area. The PCA technique applied to irrigation water quality data explained 53.27% of the variation in water quality among the sampled points. Nitrate, thermotolerant coliforms, temperature, electrical conductivity and bicarbonate were the parameters that best explained the spatial variation of water quality.


2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


Sign in / Sign up

Export Citation Format

Share Document