scholarly journals Application of machine learning in the process of classification of advertised jobs

Author(s):  
Branislava Cvijetic ◽  
Zaharije Radivojevic

Institutions that provide official statistics tend to use external data sources such as administrative data sources besides regular statistical surveys. In addition to the mentioned data sources, Big Data became recognized as a new data source for the provider of official statistics. Classification of textual data is one of the elementary tasks for the provider of official statistics, regardless of data sources. In this paper, application of traditional machine learning algorithms, Multinomial Naive Bayes and Support Vector Machine, for the classification of advertised jobs according to ISCO-08, has been presented. The paper presents the methods of collecting data on advertised jobs from four websites and procedures for creating a multilingual dataset. There are different types of text preprocessing, such as converting uppercase letters into lowercase letters, stopword removal, punctuation mark removal, lemmatization, correction of commonly misspelled words, and reduction of replicated characters. We hypothesized that the application of different combinations of preprocessing methods influenced the text classification results. Two experiments had conducted to test the hypothesis. Both experiments results showed that using the Support Vector Machine algorithm on a created dataset gives better results than Multinomial Naive Bayes. Performed experiments showed that the proposed algorithms gave a good performance with an overall accuracy of up to 90% but with different accuracy for individual classes due to an imbalanced dataset.

Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


Author(s):  
Harshal Surve ◽  
Aditya Mestry

Sarcasm is the use of words usually used to indirectly either mock or annoy someone, or for humorous purposes. One of the difficult modes of communication for machines to identify is sarcasm. People often use sarcasm in their daily communication to indirectly annoy people which makes it very important to identify the sentence meaning. There are various machine learning algorithms for sarcasm detection such as Naïve Bayes (NB), Support Vector Machine (SVM), Logistics Regression (LR), Decision Trees (DT).All these algorithm can be used for Sarcasm Detection. The main goal of this paper is to provide various machine learning algorithms for sarcasm detection.


Author(s):  
Muskan Patidar

Abstract: Social networking platforms have given us incalculable opportunities than ever before, and its benefits are undeniable. Despite benefits, people may be humiliated, insulted, bullied, and harassed by anonymous users, strangers, or peers. Cyberbullying refers to the use of technology to humiliate and slander other people. It takes form of hate messages sent through social media and emails. With the exponential increase of social media users, cyberbullying has been emerged as a form of bullying through electronic messages. We have tried to propose a possible solution for the above problem, our project aims to detect cyberbullying in tweets using ML Classification algorithms like Naïve Bayes, KNN, Decision Tree, Random Forest, Support Vector etc. and also we will apply the NLTK (Natural language toolkit) which consist of bigram, trigram, n-gram and unigram on Naïve Bayes to check its accuracy. Finally, we will compare the results of proposed and baseline features with other machine learning algorithms. Findings of the comparison indicate the significance of the proposed features in cyberbullying detection. Keywords: Cyber bullying, Machine Learning Algorithms, Twitter, Natural Language Toolkit


2017 ◽  
Vol 9 (4) ◽  
pp. 416 ◽  
Author(s):  
Nelly Indriani Widiastuti ◽  
Ednawati Rainarli ◽  
Kania Evita Dewi

Classification is the process of grouping objects that have the same features or characteristics into several classes. The automatic documents classification use words frequency that appears on training data as features. The large number of documents cause the number of words that appears as a feature will increase. Therefore, summaries are chosen to reduce the number of words that used in classification. The classification uses multiclass Support Vector Machine (SVM) method. SVM was considered to have a good reputation in the classification. This research tests the effect of summary as selection features into documents classification. The summaries reduce text into 50%. A result obtained that the summaries did not affect value accuracy of classification of documents that use SVM. But, summaries improve the accuracy of Simple Logistic Classifier. The classification testing shows that the accuracy of Naïve Bayes Multinomial (NBM) better than SVM


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2020 ◽  
Vol 19 ◽  
pp. 153303382090982
Author(s):  
Melek Akcay ◽  
Durmus Etiz ◽  
Ozer Celik ◽  
Alaattin Ozen

Background and Aim: Although the prognosis of nasopharyngeal cancer largely depends on a classification based on the tumor-lymph node metastasis staging system, patients at the same stage may have different clinical outcomes. This study aimed to evaluate the survival prognosis of nasopharyngeal cancer using machine learning. Settings and Design: Original, retrospective. Materials and Methods: A total of 72 patients with a diagnosis of nasopharyngeal cancer who received radiotherapy ± chemotherapy were included in the study. The contribution of patient, tumor, and treatment characteristics to the survival prognosis was evaluated by machine learning using the following techniques: logistic regression, artificial neural network, XGBoost, support-vector clustering, random forest, and Gaussian Naive Bayes. Results: In the analysis of the data set, correlation analysis, and binary logistic regression analyses were applied. Of the 18 independent variables, 10 were found to be effective in predicting nasopharyngeal cancer-related mortality: age, weight loss, initial neutrophil/lymphocyte ratio, initial lactate dehydrogenase, initial hemoglobin, radiotherapy duration, tumor diameter, number of concurrent chemotherapy cycles, and T and N stages. Gaussian Naive Bayes was determined as the best algorithm to evaluate the prognosis of machine learning techniques (accuracy rate: 88%, area under the curve score: 0.91, confidence interval: 0.68-1, sensitivity: 75%, specificity: 100%). Conclusion: Many factors affect prognosis in cancer, and machine learning algorithms can be used to determine which factors have a greater effect on survival prognosis, which then allows further research into these factors. In the current study, Gaussian Naive Bayes was identified as the best algorithm for the evaluation of prognosis of nasopharyngeal cancer.


Sign in / Sign up

Export Citation Format

Share Document