scholarly journals NON-LINEAR ANALYSIS OF BUILDING STRUCTURES IN SEISMIC AREAS ACCORDING TO THE EUROPEAN STANDARDS, CASE STUDY

Author(s):  
Mehmed Čaušević ◽  
Saša Mitrović

For the design and construction of buildings in seismic areas the European Standard EN 1998-1:2004 offers two non-linear methods, namely: a non-linear pushover based static method and a nonlineardynamic method. This paper discusses those methods which differ from one another in respectto accuracy, simplicity and transparency. Non-linear static procedures were developed in the worldwith the aim of overcoming the insufficiency and limitations of linear methods, whilst at the sametime maintaining a relatively simple application. All procedures incorporate performance-basedconcepts paying more attention to damage control. Application of the presented procedures isillustrated by means of an example of an eight-story reinforced concrete frame building.

1995 ◽  
Vol 11 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Robert J. McNamara

This paper presents a theoretical case study of the effectiveness of supplemental passive damping devices in reducing structural response during seismic excitation. A six story special moment resistant reinforced concrete frame is studied with and without the aid of supplemental dampers. Response predictions are presented for each case. Preliminary damper design requirements are presented for a new facility implementing the supplemental damping system to reduce seismic damage and improve the post earthquake operational capability of the facility.


Author(s):  
Jin Zhou ◽  
Zhelun Zhang ◽  
Tessa Williams ◽  
Sashi K. Kunnath

AbstractThe development of fragility functions that express the probability of collapse of a building as a function of some ground motion intensity measure is an effective tool to assess seismic vulnerability of structures. However, a number of factors ranging from ground motion selection to modeling decisions can influence the quantification of collapse probability. A methodical investigation was carried out to examine the effects of component modeling and ground motion selection in establishing demand and collapse risk of a typical reinforced concrete frame building. The primary system considered in this study is a modern 6-story RC moment frame building that was designed to current code provisions in a seismically active region. Both concentrated and distributed plasticity beam–column elements were used to model the building frame and several options were considered in constitutive modeling for both options. Incremental dynamic analyses (IDA) were carried out using two suites of ground motions—the first set comprised site-dependent ground motions, while the second set was a compilation of hazard-consistent motions using the conditional scenario spectra approach. Findings from the study highlight the influence of modeling decisions and ground motion selection in the development of seismic collapse fragility functions and the characterization of risk for various demand levels.


2007 ◽  
Vol 36 (13) ◽  
pp. 1973-1997 ◽  
Author(s):  
Christine A. Goulet ◽  
Curt B. Haselton ◽  
Judith Mitrani-Reiser ◽  
James L. Beck ◽  
Gregory G. Deierlein ◽  
...  

2012 ◽  
Vol 157-158 ◽  
pp. 1173-1177
Author(s):  
Li Xiao ◽  
Wen Zhong Qu ◽  
Jian Gang Wang

Terrorist bombing attacks will endanger and may even destroy the target building structures, resulting in economic loss and casualties. Typical columns and floor slab systems are not designed to resist the complex blast loading. So, in recent years, the effects of blast on conventional public buildings are focused on. In this paper,a two-bay,one-story reinforced concrete frame structure which is used to model a portion of a typical reinforced concrete frame structural system is used to investigate the blast response. The experiments are conducted on two models, allowing a variation in explosives standoff and explosives charge. In each experiment,the blast pressure values are recorded and the degree of damage of the frames are studied. According to the two kinds of experiments, two numerical models are established. ALE method which considers the interaction of the explosive, the air, and the structure is applied.Structure response analyses are performed using the large deformation finite-element computer code, LS-DYNA. The numerical results are compared with the experiment results, and a good agreement is obtained. The calculating results also demonstrate that some experimental value is unreasonable.


Author(s):  
L. M. Megget

The paper describes the dynamic and static analyses and design of a four storey ductile reinforced concrete frame structure isolated from the foundations by elastomeric bearings incorporating lead energy dampers. Results from inelastic, time-history analyses for the isolated and non-isolated structure are compared for several input earthquake motions. The benefits of energy dampers in reducing the isolated building's response (shears, plastic hinge demands and interstorey drifts) are detailed. Differences from conventional ductile design and detailing as well as design recommendations are included.


Sign in / Sign up

Export Citation Format

Share Document