scholarly journals Climatic tolerances and zoogeography of the late Pleistocene beetle fauna of Beringia

2002 ◽  
Vol 54 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Scott A. Elias

Abstract The study of fossil beetles has played an important role in the reconstruction of Beringian paleoenvironments. More than 25 fossil localities have yielded Late Pleistocene beetle assemblages, comprising more than 300 species, of which about 147 are predators and scavengers, groups which are suitable for paleoclimatic reconstruction. The author has developed climate envelopes (climatic parameters characterizing the modern localities in which species are found) for these species, in order to perform mutual climatic range pale- otemperature studies. This paper describes the thermal requirements of these beetles, and their zoogeographic history since the interval just prior to the last interglacial period. The fossil assemblages include 14 arctic and alpine species, 66 boreo-arctic species, and 68 boreal and temperate species. The greatest percentage of species with restricted thermal requirements occurs in the arctic and alpine group. The majority of boreo-arctic and boreal and temperate species have very broad thermal requirements. Based on modern distribution and the North American fossil record, it appears that some species resided exclusively in Beringia during the Late Pleistocene. These Beringian species comprise 64 % of the arctic and alpine species found in the fossil assemblages, 34 % of the boreo-arctic species, and only 1 % of the boreal and temperate species.

Author(s):  
Gennady M. Kamenev

An expanded description of a little-known arctic species Montacuta spitzbergensis from the Sea of Okhotsk with new data on its morphology, ecology and geographical distribution is given. This is the first record of M. spitzbergensis from the north-western Pacific. It differs from other species of Montacuta in its large (to 8.4 mm), elongate–ovate, thick shell with wide, slightly curved hinge plate, wide, short, and shallow resilifer, and weakly developed external ligament. This species occurs in the Arctic Ocean (Spitsbergen, Barents, Kara, Laptev and Chukchi Seas) and the Pacific Ocean (Sea of Okhotsk) at depths from 9 to 232 m at a bottom temperature from −1.62°C to +2.50°C. The hinge structure of the type species of the genera Montacuta and Tellimya is also discussed.


2012 ◽  
Vol 8 (5) ◽  
pp. 5293-5340 ◽  
Author(s):  
I. Nikolova ◽  
Q. Yin ◽  
A. Berger ◽  
U. K. Singh ◽  
M. P. Karami

Abstract. This paper presents a detailed analysis of the climate of the last interglacial simulated by two climate models of different complexities, LOVECLIM and CCSM3. The simulated surface temperature, hydrological cycle, vegetation and ENSO variability during the last interglacial are analyzed through the comparison with the simulated Pre-Industrial (PI) climate. In both models, the last interglacial period is characterized by a significant warming (cooling) over almost all the continents during boreal summer (winter) leading to a largely increased (reduced) seasonal contrast in the northern (southern) hemisphere. This is mainly due to the much higher (lower) insolation received by the whole Earth in boreal summer (winter) during this interglacial. The arctic is warmer than PI through the whole year, resulting from its much higher summer insolation and its remnant effect in the following fall-winter through the interactions between atmosphere, ocean and sea ice. In the tropical Pacific, the change in the SST annual cycle is suggested to be related to a minor shift towards an El Nino, slightly stronger for MIS-5 than for PI. Intensified African monsoon and vegetation feedback are responsible for the cooling during summer in North Africa and Arabian Peninsula. Over India precipitation maximum is found further west, while in Africa the precipitation maximum migrates further north. Trees and grassland expand north in Sahel/Sahara. A mix of forest and grassland occupies continents and expand deep in the high northern latitudes. Desert areas reduce significantly in Northern Hemisphere, but increase in North Australia. The simulated large-scale climate change during the last interglacial compares reasonably well with proxy data, giving credit to both models and reconstructions. However, discrepancies exist at some regional scales between the two models, indicating the necessity of more in depth analysis of the models and comparisons with proxy data.


2021 ◽  
Author(s):  
Jie Chen

<p>Loess-palaeosol sequences are the most intensively studied terrestrial archives used for the reconstruction of late Pleistocene environmental and climatic changes in the Sea of Azov region, southwest Russia. Here we present a revised luminescence-based chronostratigraphy and a multi-proxy record of late Pleistocene environmental dynamics of the most complete and representative loess-palaeosol sequences (Beglitsa and Chumbur-Kosa sections) from the Azov Sea region. We propose a new chronostratigraphy following the Chinese and Danubean loess stratigraphy models that refines the subdivision of the last interglacial palaeosol (S1) in two Azov Sea sites, resolves the uncertainty of the stratigraphic position of the weakly developed paleosol (L1SSm) in Beglitsa section, and allows direct correlation of the Azov Sea sections with those in the Danube Basin and the Chinese Loess Plateau. More importantly, it adds important data to better constrain local and regional chronostratigraphic correlations, and facilitates the interpretation of climatic connections and possible forcing mechanisms responsible for the climatic trend among these regions. In addition, a general succession of environmental dynamics is reconstructed from these two vital sections, which is broadly consistent with other loess records in the Dnieper Lowland and Lower Danube Basin, demonstrating similar climatic trends in these regions at glacial-interglacial time scales. However, differences in details were also identified, especially for palaeosols developed during the last interglacial period, and the cause of these dissimilarities between loess records appears complex.</p><p>Furthermore, our results have important implications for the chronostratigraphic representativeness of Beglitsa as a key loess section and the reconstruction of the temporal and spatial evolution of late Pleistocene palaeoclimate in the Sea of Azov region.</p><p> </p>


Nature ◽  
10.1038/36540 ◽  
1997 ◽  
Vol 390 (6656) ◽  
pp. 154-156 ◽  
Author(s):  
Jess F. Adkins§ ◽  
Edward A. Boyle ◽  
Lloyd Keigwin ◽  
Elsa Cortijo

2016 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8±4 K in northwestern Greenland based on water stable isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and pre-industrial oceanic conditions and vice versa, are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes. Surface mass balance calculations with an energy balance model indicate potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction.


ARCTIC ◽  
1958 ◽  
Vol 11 (3) ◽  
pp. 180 ◽  
Author(s):  
L.C. Bliss

Account of germination tests made with the aim of ascertaining seed viability of plants from the arctic tundra of Alaska (near Umiat, 69 22 N, 152 10 W) and the alpine tundra of Wyoming. A greater proportion of the latter germinated (of 26 species, 21 i.e. 80%; of 36 arctic species, 22 or 61%); though individual species from both tundras showed a high percentage of germination. Conditions affecting germination, influence of light and darkness, wetness, etc., are analyzed.


2012 ◽  
Vol 8 (5) ◽  
pp. 4663-4699 ◽  
Author(s):  
P. Bakker ◽  
E. J. Stone ◽  
S. Charbit ◽  
M. Gröger ◽  
U. Krebs-Kanzow ◽  
...  

Abstract. There is a growing number of proxy-based reconstructions detailing the climatic changes during the Last Interglacial period. This period is of special interest because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in the light of projected global warming. However, mainly because synchronizing the different records is difficult, there is no consensus on a global picture of Last Interglacial temperature changes. Here we present the first model inter-comparison of transient simulations covering the Last Interglacial period. By comparing the different simulations we aim at investigating the robustness of the simulated surface air temperature evolution. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–122 ka BP with temperatures 0.4 to 6.8 K above pre-industrial values. This temperature evolution is in line with the changes in June insolation and greenhouse-gas concentrations. For the evolution of July temperatures in the Southern Hemisphere, the picture emerging from the inter-comparison is less clear. However, it does show that including greenhouse-gas concentration changes is critical. The simulations that include this forcing show an early, 128 ka BP July temperature anomaly maximum of 0.5 to 2.6 K. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. In these latitudes maximum January temperature anomalies of respectively −2.5 to 2 K and 0 to 2 K are simulated for the period after 118 ka BP. The inter-comparison is inconclusive on the evolution of January temperatures in the high-latitudes of the Northern Hemisphere. Further investigation of regional anomalous patterns and inter-model differences indicate that in specific regions, feedbacks within the climate system are important for the simulated temperature evolution. Firstly in the Arctic region, changes in the summer sea-ice cover control the evolution of Last Interglacial winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are critical. The third important feedback, having an impact on the temperature evolution of the Northern Hemisphere, is shown to be the presence of remnant continental ice from the preceding glacial period. Another important feedback are changes in the monsoon regime which controls the evolution of temperatures over parts of Africa and India. Finally, the simulations reveal an important land-sea contrast, with temperature changes over the oceans lagging continental temperatures by up to several thousand years. The aforementioned feedback mechanisms tend to be highly model-dependent, indicating that specific proxy-data is needed to constrain future climate simulations and to further enhance our understanding of the evolution of the climate during the Last Interglacial period.


2013 ◽  
Vol 9 (2) ◽  
pp. 621-639 ◽  
Author(s):  
E. J. Stone ◽  
D. J. Lunt ◽  
J. D. Annan ◽  
J. C. Hargreaves

Abstract. During the Last Interglacial period (~ 130–115 thousand years ago) the Arctic climate was warmer than today, and global mean sea level was probably more than 6.6 m higher. However, there are large discrepancies in the estimated contributions to this sea level change from various sources (the Greenland and Antarctic ice sheets and smaller ice caps). Here, we determine probabilistically the likely contribution of Greenland ice sheet melt to Last Interglacial sea level rise, taking into account ice sheet model parametric uncertainty. We perform an ensemble of 500 Glimmer ice sheet model simulations forced with climatologies from the climate model HadCM3, and constrain the results with palaeodata from Greenland ice cores. Our results suggest a 90% probability that Greenland ice melt contributed at least 0.6 m, but less than 10% probability that it exceeded 3.5 m, a value which is lower than several recent estimates. Many of these previous estimates, however, did not include a full general circulation climate model that can capture atmospheric circulation and precipitation changes in response to changes in insolation forcing and orographic height. Our combined modelling and palaeodata approach suggests that the Greenland ice sheet is less sensitive to orbital forcing than previously thought, and it implicates Antarctic melt as providing a substantial contribution to Last Interglacial sea level rise. Future work should assess additional uncertainty due to inclusion of basal sliding and the direct effect of insolation on surface melt. In addition, the effect of uncertainty arising from climate model structural design should be taken into account by performing a multi-climate-model comparison.


2013 ◽  
Vol 9 (2) ◽  
pp. 605-619 ◽  
Author(s):  
P. Bakker ◽  
E. J. Stone ◽  
S. Charbit ◽  
M. Gröger ◽  
U. Krebs-Kanzow ◽  
...  

Abstract. There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG). This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are crucial. Thirdly, the presence of remnant continental ice from the preceding glacial has shown to be important when determining the timing of maximum LIG warmth in the Northern Hemisphere. Finally, the results reveal that changes in the monsoon regime exert a strong control on the evolution of LIG temperatures over parts of Africa and India. By listing these inter-model differences, we provide a starting point for future proxy-data studies and the sensitivity experiments needed to constrain the climate simulations and to further enhance our understanding of the temperature evolution of the LIG period.


Sign in / Sign up

Export Citation Format

Share Document