scholarly journals Peer Review #2 of "QseBC is involved in the biofilm formation and antibiotic resistance in Escherichia coli isolated from bovine mastitis (v0.1)"

2020 ◽  
Vol 7 ◽  
Author(s):  
John I. Alawneh ◽  
Ben Vezina ◽  
Hena R. Ramay ◽  
Hulayyil Al-Harbi ◽  
Ameh S. James ◽  
...  

Escherichia coli is frequently associated with mastitis in cattle. “Pathogenic” and “commensal” isolates appear to be genetically similar. With a few exceptions, no notable genotypic differences have been found between commensal and mastitis-associated E. coli. In this study, 24 E. coli strains were isolated from dairy cows with clinical mastitis in three geographic regions of Australia (North Queensland, South Queensland, and Victoria), sequenced, then genomically surveyed. There was no observed relationship between sequence type (ST) and region (p = 0.51). The most common Multi Locus Sequence Type was ST10 (38%), then ST4429 (13%). Pangenomic analysis revealed a soft-core genome of 3,463 genes, including genes associated with antibiotic resistance, chemotaxis, motility, adhesion, biofilm formation, and pili. A total of 36 different plasmids were identified and generally found to have local distributions (p = 0.02). Only 2 plasmids contained antibiotic resistance genes, a p1303_5-like plasmid encoding multidrug-resistance (trimethoprim, quaternary ammonium, beta-lactam, streptomycin, sulfonamide, and kanamycin) from two North Queensland isolates on the same farm, while three Victorian isolates from the same farm contained a pCFSAN004177P_01-like plasmid encoding tetracycline-resistance. This pattern is consistent with a local spread of antibiotic resistance through plasmids of bovine mastitis cases. Notably, co-occurrence of plasmids containing virulence factors/antibiotic resistance with putative mobilization was rare, though the multidrug resistant p1303_5-like plasmid was predicted to be conjugative and is of some concern. This survey has provided greater understanding of antibiotic resistance within E. coli-associated bovine mastitis which will allow greater prediction and improved decision making in disease management.


2019 ◽  
Vol 11 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Rashmi M. Karigoudar ◽  
Mahesh H. Karigoudar ◽  
Sanjay M. Wavare ◽  
Smita S. Mangalgi

Abstract BACKGROUND: Escherichia coli accounts for 70%–95% of urinary tract infections (UTIs). UTI is a serious health problem with respect to antibiotic resistance and biofilms formation being the prime cause for the antibiotic resistance. Biofilm can restrict the diffusion of substances and binding of antimicrobials. In this context, the present study is aimed to perform in vitro detection of biofilm formation among E. coli strains isolated from urine and to correlate their susceptibility pattern with biofilm formation. MATERIALS AND METHODS: A total of 100 E. coli strains isolated from patients suffering from UTI were included in the study. The identification of E. coli was performed by colony morphology, Gram staining, and standard biochemical tests. The detection of biofilm was carried out by Congo Red Agar (CRA) method, tube method (TM), and tissue culture plate (TCP) method. Antimicrobial sensitivity testing was performed by Kirby–Bauer disc diffusion method on Muller–Hinton agar plate. RESULTS: Of the 100 E. coli strains, 49 (49%) and 51 (51%) were from catheterized and noncatheterized patients, respectively. Biofilm production was positive by CRA, TM, and TCP method were 49 (49%), 55 (55%), and 69 (69%), respectively. Biofilm producers showed maximum resistance to co-trimoxazole (73.9%), gentamicin (94.2%), and imipenem (11.6%) when compared to nonbiofilm producers. Significant association was seen between resistance to antibiotic and biofilm formation with a P = 0.01 (<0.05). CONCLUSION: A greater understanding of biofilm detection in E. coli will help in the development of newer and more effective treatment. The detection of biofilm formation and antibiotic susceptibility pattern helps in choosing the correct antibiotic therapy.


Author(s):  
Husian Shogaa Al-Deen ◽  
Azhar Azher Mohammed Al-Ankoshy ◽  
Mohammed Mohammed Ali Al-Najhi ◽  
Tagrid Ahmed Al-Kabsia ◽  
Khaled A AL-Haddad ◽  
...  

Background: No information is available on the antimicrobial sensitivity pattern and guidelines for oral antibiotic therapy for Yemeni patients for those with localized aggressive periodontitis (LAP) due to Porphyromonas gingivalis, a condition that often requires complementary antibiotic treatment. Aim: The primary aim of the current study was to examine the antibiotic patterns and the potential relationship between P. gingivalis biofilm formation and the incidence of antibiotic resistance of clinical isolates on a group of antibiotics commonly used in oral/systemic therapy. Subjects and Methods: The study included 30 clinically diagnosed patients, and 30 strains of P. gingivalis were isolated from them.  Microbial sampling, isolation, and identification of bacteria were performed using culture methods appropriate to anaerobic species. Biofilm production was evaluated by the phenotypic method, that is, tissue culture methods (TCPM). Also; each isolate was tested against 12 antibiotics using the disc diffusion method. Results: After isolated P. gingivalis were subjected to biofilm detection by TCP method, 7 (23.3%) showed high, 6 (20%) moderate, while 17 (56.7%) showed non/weak biofilm-forming ability. P. gingivalis  biofilms showed a higher resistance rate than forming non/weak biofilms e.g amoxicillin (92.3% vs 64.7%, p = 0.08), azithromycin (58.8% vs 11.7, p =0.003), metronidazole (76.9% vs 29.4%, p = 0.08), 0.01) and clindamycin (84.6% vs 47.1, p = 0.03). Conclusion: It was found that the drug-resistant factor in P. gingivalis isolates is associated with the formation of P. gingivalis biofilm. Even though the current results show a high sensitivity result for P. gingivalis strains, some resistance has been observed. Antibiotic resistance patterns can modify over the years, make susceptibility testing essential and to promote careful choice of preliminary antibiotic treatment, the same as an adjuvant to endodontic therapy.                    Peer Review History: Received: 9 July 2021; Revised: 12 August; Accepted: 6 September, Available online: 15 September 2021 Academic Editor:  Dr. Ali Abdullah Al-yahawi, Al-Razi university, Department of Pharmacy, Yemen, [email protected] UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency.  Received file:                Reviewer's Comments: Average Peer review marks at initial stage: 6.0/10 Average Peer review marks at publication stage: 7.0/10 Reviewers: Dr. Rawaa Souhil Al-Kayali, Aleppo University, Syria, [email protected] Dr. Wadhah Hassan Ali Edrees, Hajja University, Yemen, [email protected] Rola Jadallah, Arab American University, Palestine, [email protected] Similar Articles: RISK FACTORS OF PERIODONTAL DISEASES AMONG YEMENI YOUNG DENTAL PATIENTS


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Mostafa Boroumand ◽  
Asghar Sharifi ◽  
Mohammad Amin Ghatei ◽  
Mohsen Sadrinasab

Background: Uropathogenic Escherichia coli (UPEC) strains, encoding superficial and secretory virulence factors, can lead to colonization and facilitation of bacterial growth in the host urinary tract, causing Urinary Tract Infection (UTI). Objectives: This study determined the ability of biofilm formation by the Congo red agar (CRA) method, the presence of virulence genes using the multiplex polymerase chain reaction (PCR) method, and the relationship between biofilm formation and antibiotic resistance patterns and virulence genes in E. coli clinical isolates in Yasuj. Methods: This cross-sectional study was performed on 144 UPEC isolates collected in 2017. Biofilm formation was detected by the CRA phenotypic assay and virulence factors by the multiplex PCR method. Antibiotic resistance tests were performed by the Kirby-Bauer method. Results: Out of 144 isolates of E. coli, 22 (19.4%) isolates showed to be strong biofilm producers, 27 (23.8%) moderate biofilm producers, and 64 (56.3%) weak biofilm producers. A significant relationship was observed between biofilm-producing strains and resistance to ampicillin (P = 0.020) and cotrimoxazole (P = 0.038). The virulence genes in strong biofilm producers included iutA (95%), FimH (93%), ompT (90%), PAI (90%), and TraT (81%) genes. The phylogroup B2 carried the most virulence genes. A significant correlation was observed between E. coli phylogenetic groups and aer (P = 0.019), iroN (P = 0.042), and ompT (P = 0.032) virulence genes. Conclusions: The results of this study showed a high prevalence of virulence genes, and antibiotic-resistant E. coli strains capable of biofilm formation. The results of this study may help elucidate the pathogenesis of UPEC and facilitate better treatment strategies for patients with UTIs in this geographic area.


2020 ◽  
Vol 14 (4) ◽  
pp. 2577-2584
Author(s):  
Tariq Ahmad Shah ◽  
P. Preethishree ◽  
Ashwini ◽  
Vidya Pai

Urinary tract infection (UTI) is one of the most common complaints in the outpatient clinic and a major health problem owing to the emergence of antibiotic resistance and biofilm formation. The objective of this study was to isolate and identify the causative bacterial agent of UTI and detect in vitro biofilm formation by Escherichia coli and investigate its correlation with antibiotic resistance. Urine samples from 519 patients with suspected UTIs were collected and processed by conventional microbiological procedures. Antimicrobial susceptibility testing for E. coli isolates was performed on Mueller Hinton agar (MHA) plates using the Kirby-Bauer disk diffusion method. Biofilm production was evaluated using the tissue culture plate method. Of 519 urine samples, 115 (22.1%) showed significant bacteriuria. The most common isolate was E. coli (n=57, 49.6%), followed by Klebsiella spp. (n=23, 20%). All E. coli isolates were evaluated for their ability to form biofilms in vitro. Of 57 isolates, 50 (87.7%) were biofilm producers and 7 (12.3%) were non-biofilm producers. Antibiogram of E. coli isolates revealed the highest resistance to ampicillin (96.5%) and nitrofurantoin (91.2%), followed by amoxyclav (82.5%), ceftazidime (73.7%), cefepime (71.9%), and tetracycline (71.9%). A significant association (p<0.05) was observed between biofilm formation and resistance to amoxyclav, ceftazidime, cefepime, imipenem, and nitrofurantoin. A significant correlation was noted between biofilm production and antibiotic resistance. Hence, screening of all isolates of uropathogenic E. coli for biofilm production and studying their antibiogram would allow appropriate choice of antibiotic therapy.


Experimed ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 60-64
Author(s):  
Hatice Nur Halipci Topsakal ◽  
◽  
Okan Aydogan ◽  
Sinem Ozdemir ◽  
Fatma Koksal Cakirlar ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5711 ◽  
Author(s):  
Lumin Yu ◽  
Fei Shang ◽  
Xiaolin Chen ◽  
Jingtian Ni ◽  
Li Yu ◽  
...  

Background Escherichia coli is an important opportunistic pathogen that could cause inflammation of the udder in dairy cows resulting in reduced milk production and changes in milk composition and quality, and even death of dairy cows. Therefore, mastitis is the main health issue which leads to major economic losses on dairy farms. Antibiotics are routinely used for the treatment of bovine mastitis. The ability to form biofilm increases the antibiotic resistance of E. coli. Nanoparticles (NPs), a nanosized, safe, and highly cost-effective antibacterial agent, are potential biomedical tools. Given their antibacterial activities, silver nanoparticles (Ag NPs) have a broad range of applications. Methods In this study, we performed antibacterial activity assays, biofilm formation assays, scanning electron microscopy (SEM) experiments, and real-time reverse transcription PCR (RT-PCR) experiments to investigate the antibacterial and anti-biofilm effect of quercetin, Ag NPs, and Silver-nanoparticle-decorated quercetin nanoparticles (QA NPs) in E. coli strain ECDCM1. Results In this study, QA NPs, a composite material combining Ag NPs and the plant-derived drug component quercetin, exhibited stronger antibacterial and anti-biofilm properties in a multi-drug resistant E. coli strain isolated from a dairy cow with mastitis, compared to Ag NPs and Qe. Discussion This study provides evidence that QA NPs possess high antibacterial and anti-biofilm activities. They proved to be more effective than Ag NPs and Qe against the biofilm formation of a multi-drug resistant E. coli isolated from cows with mastitis. This suggests that QA NPs might be used as a potential antimicrobial agent in the treatment of bovine mastitis caused by E. coli.


Sign in / Sign up

Export Citation Format

Share Document