scholarly journals Applications of biodiversity theories in conservation

Author(s):  
Katrin M. Meyer ◽  
Marco Sciaini ◽  
Clara-Sophie van Waveren

Biodiversity theories are not very often explicitly consulted in conservation practice, but implicitly many conservation decisions rely on theory. Biodiversity theories can inform important conservation actions such as assessments of species richness and extinction or habitat loss and fragmentation. Popular examples of biodiversity theories are niche theory and island biogeography theory, whereas neutral theory is less known. Here, we review the implications of biodiversity theories for conservation practice, focusing on neutral theory. Neutral theory assumes that the establishment and success of an individual in a community does not depend on its species identity, but is instead predominantly driven by a stochastic process. We found that drift and stochasticity appear much less frequently in conservation studies than selection processes typical of niche theory. This might be because habitat-specificity is not supported by neutral theory, but is common among rare and vulnerable species. Furthermore, neutral theory makes less intuitive assumptions than niche theory and does not consider trophic interactions. However, models based on neutral theory proved to be useful in some biodiversity hotspots. Moreover, some models based on neutral theory subdivide space into local community and metacommunity, which reflects concepts commonly used in conservation science. Neutral approaches have been used in conservation to generate realistic species-abundance distributions and species-area relationships, provide a standard against which to compare species loss, prioritize species protection, model biological invasions, and support protected area design. We propose that neutral theory can serve as a valuable first-order approximation to reduce complexity and by design account for drift and stochasticity. Neutral theory provides the benefits of a community theory whereas niche theory focuses on single species. Ideally, neutral approaches should be used as a starting point for conscious stepwise addition of niche structure. This step-wise approach reflects recent integrative biodiversity theories that combine aspects of neutral and niche theory such as the stochastic niche or emergent neutrality and may provide a promising foundation for future conservation practice.

2018 ◽  
Author(s):  
Katrin M. Meyer ◽  
Marco Sciaini ◽  
Clara-Sophie van Waveren

Biodiversity theories are not very often explicitly consulted in conservation practice, but implicitly many conservation decisions rely on theory. Biodiversity theories can inform important conservation actions such as assessments of species richness and extinction or habitat loss and fragmentation. Popular examples of biodiversity theories are niche theory and island biogeography theory, whereas neutral theory is less known. Here, we review the implications of biodiversity theories for conservation practice, focusing on neutral theory. Neutral theory assumes that the establishment and success of an individual in a community does not depend on its species identity, but is instead predominantly driven by a stochastic process. We found that drift and stochasticity appear much less frequently in conservation studies than selection processes typical of niche theory. This might be because habitat-specificity is not supported by neutral theory, but is common among rare and vulnerable species. Furthermore, neutral theory makes less intuitive assumptions than niche theory and does not consider trophic interactions. However, models based on neutral theory proved to be useful in some biodiversity hotspots. Moreover, some models based on neutral theory subdivide space into local community and metacommunity, which reflects concepts commonly used in conservation science. Neutral approaches have been used in conservation to generate realistic species-abundance distributions and species-area relationships, provide a standard against which to compare species loss, prioritize species protection, model biological invasions, and support protected area design. We propose that neutral theory can serve as a valuable first-order approximation to reduce complexity and by design account for drift and stochasticity. Neutral theory provides the benefits of a community theory whereas niche theory focuses on single species. Ideally, neutral approaches should be used as a starting point for conscious stepwise addition of niche structure. This step-wise approach reflects recent integrative biodiversity theories that combine aspects of neutral and niche theory such as the stochastic niche or emergent neutrality and may provide a promising foundation for future conservation practice.


2018 ◽  
Author(s):  
Andres Laan ◽  
Gonzalo G. de Polavieja

AbstractEcological models of community dynamics fall into two main categories. The neutral theory of biodiversity correctly predicts various large-scale ecosystem characteristics such as the species abundance distributions. On a smaller scale, the niche theory of species competition explains population dynamics and interactions between two to a dozen species. Despite the successes of the two theories, they rely on two contradictory assumptions. In the neutral theory each species is competitively equivalent while in the niche theory every species is specialized to exploit a specific part of its environment. Here we propose a resolution to this contradiction using a game theory model of competition with an attractor hyperplane as its equilibrium solution. When the population dynamics shifts within the hyperplane, it is selectively neutral. However, any movement perpendicular to the hyperplane is subject to restoring forces similar to what is predicted by the niche theory. We show that this model correctly reproduces empirical species abundance distributions and is also compatible with species removal experiments.


2021 ◽  
Vol 13 (4) ◽  
pp. 2121 ◽  
Author(s):  
Ingrid Vigna ◽  
Angelo Besana ◽  
Elena Comino ◽  
Alessandro Pezzoli

Although increasing concern about climate change has raised awareness of the fundamental role of forest ecosystems, forests are threatened by human-induced impacts worldwide. Among them, wildfire risk is clearly the result of the interaction between human activities, ecological domains, and climate. However, a clear understanding of these interactions is still needed both at the global and local levels. Numerous studies have proven the validity of the socioecological system (SES) approach in addressing this kind of interdisciplinary issue. Therefore, a systematic review of the existing literature on the application of SES frameworks to forest ecosystems is carried out, with a specific focus on wildfire risk management. The results demonstrate the existence of different methodological approaches that can be grouped into seven main categories, which range from qualitative analysis to quantitative spatially explicit investigations. The strengths and limitations of the approaches are discussed, with a specific reference to the geographical setting of the works. The research suggests the importance of local community involvement and local knowledge consideration in wildfire risk management. This review provides a starting point for future research on forest SES and a supporting tool for the development of a sustainable wildfire risk adaptation and mitigation strategy.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 935
Author(s):  
Mohammad Bataineh ◽  
Ethan Childs

The need for a comprehensive and mechanistic understanding of competition has never been more important as plants adapt to a changing environment and as forest management evolves to focus on maintaining and enhancing complexity. With the recent decline in shortleaf pine (Pinus echinata Mill.) land area, it is critical to determine the effects of competition on shortleaf pine and its performance against loblolly pine (Pinus taeda L.), the preferred planted replacement. We evaluate differences in shortleaf and loblolly pine 10 year mean basal area increment (BAI) and crown dimensions across a gradient of neighborhoods. Linear mixed-effects regression models were developed using BAI and several crown metrics as responses and crowding, competitor species abundance and identity, and initial size and species identity of focal tree as predictors. Crowding of focal trees negatively impacted BAI and crown size (p < 0.001, respectively). Although loblolly pine had three times higher BAI as compared to shortleaf pine within similar neighborhoods, BAI was variable, and the crowding effect did not differ between shortleaf and loblolly pine (p ranged from 0.51–0.99). Competitive impacts on focal trees did not differ by competitor identity (p ranged from 0.07–0.70). Distance-independent competition indices better explained the variation in BAI and horizontal crown metrics, while distance-dependent size ratios were more effective at evaluating vertical crown metrics. These findings highlight shortleaf pine competitive potential in mature, natural-origin stands and provide support for the restoration of pine–hardwood and hardwood–pine stratified mixtures as well as management of shortleaf pine at long rotations.


2004 ◽  
Vol 61 (8) ◽  
pp. 1398-1409 ◽  
Author(s):  
Morten Vinther ◽  
Stuart A. Reeves ◽  
Kenneth R. Patterson

Abstract Fishery management advice has traditionally been given on a stock-by-stock basis. Recent problems in implementing this advice, particularly for the demersal fisheries of the North Sea, have highlighted the limitations of the approach. In the long term, it would be desirable to give advice that accounts for mixed-fishery effects, but in the short term there is a need for approaches to resolve the conflicting management advice for different species within the same fishery, and to generate catch or effort advice that accounts for the mixed-species nature of the fishery. This paper documents a recent approach used to address these problems. The approach takes the single-species advice for each species in the fishery as a starting point, then attempts to resolve it into consistent catch or effort advice using fleet-disaggregated catch forecasts in combination with explicitly stated management priorities for each stock. Results are presented for the groundfish fisheries of the North Sea, and these show that the development of such approaches will also require development of the ways in which catch data are collected and compiled.


2019 ◽  
Author(s):  
Brian Joseph Enquist ◽  
Xiao Feng ◽  
Bradley Boyle ◽  
Brian Maitner ◽  
Erica A. Newman ◽  
...  

A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant species observation data in order to quantify the fraction of Earth’s extant land plant biodiversity that is common versus rare. Tests of different hypotheses for the origin of species commonness and rarity indicates that sampling biases and prominent models such as niche theory and neutral theory cannot account for the observed prevalence of rare species. Instead, the distribution of commonness is best approximated by heavy-tailed distributions like the Pareto or Poisson-lognormal distributions. As a result, a large fraction, ~36.5% of an estimated ~435k total plant species, are exceedingly rare. We also show that rare species tend to cluster in a small number of ‘hotspots’ mainly characterized by being in tropical and subtropical mountains and areas that have experienced greater climate stability. Our results indicate that (i) non-neutral processes, likely associated with reduced risk of extinction, have maintained a large fraction of Earth’s plant species but that (ii) climate change and human impact appear to now and will disproportionately impact rare species. Together, these results point to a large fraction of Earth’s plant species are faced with increased chances of extinction. Our results indicate that global species abundance distributions have important implications for conservation planning in this era of rapid global change.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alex Moysés Barbanti ◽  
Rosley Anholon ◽  
Izabela Simon Rampasso ◽  
Vitor William Batista Martins ◽  
Osvaldo Luiz Gonçalves Quelhas ◽  
...  

Purpose This paper aims to evaluate the adoption of sustainable procurement practices adopted by Brazilian manufacturing companies in supplier selection; additionally, it is aimed to understand which of these practices enable a better differentiation of the analysed companies. Design/methodology/approach A systematic literature review was performed to compose the theoretical base of this research. In addition, a detailed study of ISO 20400 standard was conducted. The guidelines of ISO 20400 were used as a base to structure a questionnaire used in a survey with professionals working in procurement sphere of manufacturing companies in Brazil. The data were analysed via frequency and CRITIC (Criteria Importance Through Intercriteria Correlation) method. Findings A moderate dispersion in the adoption level of sustainable procurement practices in supplier selection process of the manufacturing companies was observed; in practices associated with social aspects, the dispersion is greater. A negative issue to be highlighted is that almost 20% of analysed companies did not even considered in their supplier selection process if their candidates accomplish philanthropic activities, generate jobs in local community and fulfill the Universal Declaration of Human Rights of United Nations (UN). Those two last practices are the ones with the best capacity to differ the companies in the sample. Originality/value There are few studies that focuses on understanding the adoption of sustainable procurement practices in manufacturing companies' supplier selection process. The main contribution of this study to the literature is to evidence that social requirements in supplier selection process are considered in a clear and well-structured form only by few Brazilian manufacturing companies. Despite the sample size, companies analysed in this research are prominent organisations in manufacturing sector. Thus, if this situation occurs in these companies, a more critical scenario will be evidenced in other organisations. This study has implication for practice and academy. For companies' managers, information present here can be used to debate the theme in the organisational context and the nine practices and scale can be used to perform a critical analysis of company's practices. For researchers, the information present here can be used as starting point for futures studies.


2020 ◽  
Author(s):  
Kelly A Speer ◽  
Tiago Teixeira ◽  
Alexis Brown ◽  
Susan Perkins ◽  
Katharina Dittmar ◽  
...  

2020 ◽  
Vol 4 ◽  
Author(s):  
Lidia Garrido-Sanz ◽  
Miquel Àngel Senar ◽  
Josep Piñol

Amplicon metabarcoding is an established technique to analyse the taxonomic composition of communities of organisms using high-throughput DNA sequencing, but there are doubts about its ability to quantify the relative proportions of the species, as opposed to the species list. Here, we bypass the enrichment step and avoid the PCR-bias, by directly sequencing the extracted DNA using shotgun metagenomics. This approach is common practice in prokaryotes, but not in eukaryotes, because of the low number of sequenced genomes of eukaryotic species. We tested the metagenomics approach using insect species whose genome is already sequenced and assembled to an advanced degree. We shotgun-sequenced, at low-coverage, 18 species of insects in 22 single-species and 6 mixed-species libraries and mapped the reads against 110 reference genomes of insects. We used the single-species libraries to calibrate the process of assignation of reads to species and the libraries created from species mixtures to evaluate the ability of the method to quantify the relative species abundance. Our results showed that the shotgun metagenomic method is easily able to set apart closely-related insect species, like four species of Drosophila included in the artificial libraries. However, to avoid the counting of rare misclassified reads in samples, it was necessary to use a rather stringent detection limit of 0.001, so species with a lower relative abundance are ignored. We also identified that approximately half the raw reads were informative for taxonomic purposes. Finally, using the mixed-species libraries, we showed that it was feasible to quantify with confidence the relative abundance of individual species in the mixtures.


Sign in / Sign up

Export Citation Format

Share Document