scholarly journals Mycorrhizal response in crop versus wild plants

Author(s):  
Vasilis Kokkoris ◽  
Chantal Hamel ◽  
Miranda Hart

We proposed a theoretical framework predicting mutualistic outcomes for the arbuscular mycorrhizal (AM) symbiosis based on host identity (crop versus wild). To test the framework, we grew two isolates of Rhizoglomus irregulare (commercial versus an isolate locally sourced from a site in Saskatchewan), with five crop plants and five wild plants that are endemic to the region and co-occur with the locally sourced fungus. While inoculation had no effect on plant biomass, it decreased leaf P content, particularly for wild plants. All plants associating with the commercial fungus had lower leaf P. Overall, our data shows that wild plants may be more sensitive to differences in mutualistic quality among commercial biofertilizers.

2018 ◽  
Author(s):  
Vasilis Kokkoris ◽  
Chantal Hamel ◽  
Miranda Hart

We proposed a theoretical framework predicting mutualistic outcomes for the arbuscular mycorrhizal (AM) symbiosis based on host identity (crop versus wild). To test the framework, we grew two isolates of Rhizoglomus irregulare (commercial versus an isolate locally sourced from a site in Saskatchewan), with five crop plants and five wild plants that are endemic to the region and co-occur with the locally sourced fungus. While inoculation had no effect on plant biomass, it decreased leaf P content, particularly for wild plants. All plants associating with the commercial fungus had lower leaf P. Overall, our data shows that wild plants may be more sensitive to differences in mutualistic quality among commercial biofertilizers.


2003 ◽  
Vol 83 (4) ◽  
pp. 337-342 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
S. H. Begna ◽  
B. L. Ma ◽  
D. L. Smith

The ability of arbuscular mycorrhizal (AM) fungi to help their host plant absorb soil P is well known, but little attention has been paid to the effect of AM fungi on soil P depletion capacity. A greenhouse experiment was conducted to assess, under different P levels, the effects of mycorrhizae on extractable soil P and P uptake by maize hybrids with contrasting phenotypes. The experiment had three factors, including two mycorrhizal treatments (mycorrhizal and non-mycorrhizal), three P fertilizer rates (0, 40, and 80 mg kg-1) and three maize hybrids [leafy normal stature (LNS), leafy reduced stature (LRS) and a conventional hybrid, Pioneer 3979 (P3979)]. Extractable soil P was determined after 3, 6 and 9 wk of maize growth. Plant biomass, P concentration and total P content were also determined after 9 wk of growth. Fertilization increased soil extractable P, plant biomass, P concentration in plants and total P uptake. In contrast to P3979, the LNS and LRS hybrids had higher biomass and total P content when mycorrhizal. Mycorrhizae had less influence on soil extractable P than on total P uptake by plants. The absence of P fertilization increased the importance of AM fungi for P uptake, which markedly reduced soil extractable P under AM plants during growth. This effect was strongest for LNS, the most mycorrhizae-dependent hybrid, intermediate for LRS, and not significant for the commercial hybrid P3979, which did not respond to AM inoculation. Key words: Arbuscular mycorrhizal fungi, extraradical hyphae, maize hybrid,plant biomass, P uptake, soil extractable P


2020 ◽  
Author(s):  
Dayakar Govindu ◽  
Anusha Duvva ◽  
Srinivas Podeti

Arbuscular mycorrhizal (AM) association is the most common symbiotic association of plants with microbes. AM fungi occur in the majority of natural habitats and they provide a range of important biological services, in particular by improving plant nutrition, abiotic resistance, and soil structure and fertility. AM fungi also interact with most crop varieties and forest plants. The possible benefit of AM fungi in forestry can be achieved through a combination of inoculum methods. The mycorrhizal inoculum levels in the soil and their colonization in different forest plant roots which leads to reduce the fertilizers, pathogen effects and fungicides and to protect topsoil, soil erosion, and water-logging. Currently, several reports were suggested that AM symbiosis can improve the potential for different plant species. Two steps could be used to produce high yielding of different plant biomass that would be both mycorrhizal dependency and suitability for sowing into the field with high inoculum levels Therefore, the wide-scale inoculation of AM fungi on forest trees will become economically important. The successful research is required in the area of mass production of AM fungal inoculum and AM fungi associated with roots which will contribute to sustainable forestry.


1987 ◽  
Vol 17 (8) ◽  
pp. 951-956 ◽  
Author(s):  
C. P. Andersen ◽  
E. I. Sucoff ◽  
R. K. Dixon

Green ash (Fraxinuspennsylvanica Marsh.) seedlings were either inoculated with Glomusetunicatum or not inoculated and grown for approximately 5 weeks under glasshouse conditions to permit root colonization with vesicular–arbuscular (V–A) mycorrhizae. Two experiments were conducted to characterize V–A mycorrhizae influence on seedling growth at low root temperature. In experiment 1, seedlings were subjected to four root zone temperatures ranging from 7.5 to 20 °C for 24 days to measure leaf area and plant height on intact seedlings. In experiment 2, seedlings were exposed to root temperatures of 12.0, 16.0, and 20.0 °C for 30 days and seedlings were destructively harvested at 6-day intervals to measure growth variables and biomass distribution. Results of experiments 1 and 2 were similar. In experiment 1, leaf area growth of mycorrhizal seedlings was significantly greater than nonmycorrhizal controls at all temperatures. Relative leaf area growth rate was greater in mycorrhizal than nonmycorrhizal seedlings at 7.5 and 11.5 °C, similar between treatments at 15.5 °C, and greater in nonmycorrhizal seedlings at 20.0 °C, differences possibly resulting from the larger size of mycorrhizal seedlings at the start of the temperature treatments. In experiment 2, temperature treatments were imposed on seedlings of the same size. Mycorrhizal seedlings had greater leaf area growth rates and relative leaf area growth rates than nonmycorrhizal seedlings at all temperatures. Phosphorus concentrations and total P content in roots and leaves did not differ significantly between mycorrhizal treatments at any temperature; however, mycorrhizal seedlings had consistently greater leaf P content than nonmycorrhizal controls. Glomusetunicatum actively stimulates green ash growth at moderately low root temperatures.


Author(s):  
N. C. Temegne ◽  
T. D. Nkou Foh ◽  
V. D. Taffouo ◽  
G. A. Wakem ◽  
E. Youmbi

Increasing yields in agriculture and management of soil fertility are becoming a major issue in view of the malnutrition problems. Tropical ferralitic soils are phosphorus (P)-deficient. The arbuscular mycorrhizal fungi (AMF) must form symbiotic associations with plants to enhance their hydro-mineral nutrition. The objective of this study was to evaluate the effect of mycorhization on growth of Vigna subterranea. Seedlings of two landraces were inoculated withAMF composite (Gigaspora margarita and Acaulospora tuberculata). P was administered by Hoagland solution (0 and 1000 mMPi). Two months after sowing, plants were harvested. The results show that,with or without phosphate, the number of nodules was three times (p less than 0.001) higher in mycorrhized plants compared to controls.Phosphate increased (p less than 0.001) the leaf P-content by 21 and 54% for the control and mycorrhized plants, respectively. Soluble phosphate did not affect the frequency and intensity of mycorhization. Soluble phosphate and mycorhizationsignificantly improve growth and leaf P-content.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alberto Andrino ◽  
Georg Guggenberger ◽  
Sarmite Kernchen ◽  
Robert Mikutta ◽  
Leopold Sauheitl ◽  
...  

Most plants living in tropical acid soils depend on the arbuscular mycorrhizal (AM) symbiosis for mobilizing low-accessible phosphorus (P), due to its strong bonding by iron (Fe) oxides. The roots release low-molecular-weight organic acids (LMWOAs) as a mechanism to increase soil P availability by ligand exchange or dissolution. However, little is known on the LMWOA production by AM fungi (AMF), since most studies conducted on AM plants do not discriminate on the LMWOA origin. This study aimed to determine whether AMF release significant amounts of LMWOAs to liberate P bound to Fe oxides, which is otherwise unavailable for the plant. Solanum lycopersicum L. plants mycorrhized with Rhizophagus irregularis were placed in a bicompartmental mesocosm, with P sources only accessible by AMF. Fingerprinting of LMWOAs in compartments containing free and goethite-bound orthophosphate (OP or GOE-OP) and phytic acid (PA or GOE-PA) was done. To assess P mobilization via AM symbiosis, P content, photosynthesis, and the degree of mycorrhization were determined in the plant; whereas, AM hyphae abundance was determined using lipid biomarkers. The results showing a higher shoot P content, along with a lower N:P ratio and a higher photosynthetic capacity, may be indicative of a higher photosynthetic P-use efficiency, when AM plants mobilized P from less-accessible sources. The presence of mono-, di-, and tricarboxylic LMWOAs in compartments containing OP or GOE-OP and phytic acid (PA or GOE-PA) points toward the occurrence of reductive dissolution and ligand exchange/dissolution reactions. Furthermore, hyphae grown in goethite loaded with OP and PA exhibited an increased content of unsaturated lipids, pointing to an increased membrane fluidity in order to maintain optimal hyphal functionality and facilitate the incorporation of P. Our results underpin the centrality of AM symbiosis in soil biogeochemical processes, by highlighting the ability of the AMF and accompanying microbiota in releasing significant amounts of LMWOAs to mobilize P bound to Fe oxides.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohamed S. Sheteiwy ◽  
Dina Fathi Ismail Ali ◽  
You-Cai Xiong ◽  
Marian Brestic ◽  
Milan Skalicky ◽  
...  

Abstract Background The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). Results Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. Conclusions The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manoj-Kumar Arthikala ◽  
Kalpana Nanjareddy ◽  
Lourdes Blanco ◽  
Xóchitl Alvarado-Affantranger ◽  
Miguel Lara

AbstractTarget of rapamycin (TOR) is a conserved central growth regulator in eukaryotes that has a key role in maintaining cellular nutrient and energy status. Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts that assist the plant in increasing nutrient absorption from the rhizosphere. However, the role of legume TOR in AM fungal symbiosis development has not been investigated. In this study, we examined the function of legume TOR in the development and formation of AM fungal symbiosis. RNA-interference-mediated knockdown of TOR transcripts in common bean (Phaseolus vulgaris) hairy roots notably suppressed AM fungus-induced lateral root formation by altering the expression of root meristem regulatory genes, i.e., UPB1, RGFs, and sulfur assimilation and S-phase genes. Mycorrhized PvTOR-knockdown roots had significantly more extraradical hyphae and hyphopodia than the control (empty vector) roots. Strong promoter activity of PvTOR was observed at the site of hyphal penetration and colonization. Colonization along the root length was affected in mycorrhized PvTOR-knockdown roots and the arbuscules were stunted. Furthermore, the expression of genes induced by AM symbiosis such as SWEET1, VPY, VAMP713, and STR was repressed under mycorrhized conditions in PvTOR-knockdown roots. Based on these observations, we conclude that PvTOR is a key player in regulating arbuscule development during AM symbiosis in P. vulgaris. These results provide insight into legume TOR as a potential regulatory factor influencing the symbiotic associations of P. vulgaris and other legumes.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 241-251 ◽  
Author(s):  
Ylva Lekberg ◽  
Roger T. Koide

Our knowledge of arbuscular mycorrhizal (AM) function is largely based on results from short-term studies in controlled environments. While these have provided many important insights into the potential effects of the symbiosis on the two symbionts and their communities, they may have also inadvertently led to faulty assumptions about the function of the symbiosis in natural settings. Here we highlight the consequences of failing to consider the AM symbiosis from the perspectives of community ecology and evolutionary biology. Also, we argue that by distinguishing between physiological and evolutionary viewpoints, we may be able to resolve controversies regarding the mutualistic vs. parasitic nature of the symbiosis. Further, while most AM research has emphasized resource transfers, primarily phosphate and carbohydrate, our perceptions of parasitism, cheating, bet-hedging, and partner choice would most likely change if we considered other services. Finally, to gain a fuller understanding of the role of the AM symbiosis in nature, we need to better integrate physiological processes of plants and their AM fungi with their naturally occurring temporal and spatial patterns. It is our hope that this article will generate some fruitful discussions and make a contribution toward this end.


Sign in / Sign up

Export Citation Format

Share Document