Soil phosphorus depletion capacity of arbuscular mycorrhizae formed by maize hybrids

2003 ◽  
Vol 83 (4) ◽  
pp. 337-342 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
S. H. Begna ◽  
B. L. Ma ◽  
D. L. Smith

The ability of arbuscular mycorrhizal (AM) fungi to help their host plant absorb soil P is well known, but little attention has been paid to the effect of AM fungi on soil P depletion capacity. A greenhouse experiment was conducted to assess, under different P levels, the effects of mycorrhizae on extractable soil P and P uptake by maize hybrids with contrasting phenotypes. The experiment had three factors, including two mycorrhizal treatments (mycorrhizal and non-mycorrhizal), three P fertilizer rates (0, 40, and 80 mg kg-1) and three maize hybrids [leafy normal stature (LNS), leafy reduced stature (LRS) and a conventional hybrid, Pioneer 3979 (P3979)]. Extractable soil P was determined after 3, 6 and 9 wk of maize growth. Plant biomass, P concentration and total P content were also determined after 9 wk of growth. Fertilization increased soil extractable P, plant biomass, P concentration in plants and total P uptake. In contrast to P3979, the LNS and LRS hybrids had higher biomass and total P content when mycorrhizal. Mycorrhizae had less influence on soil extractable P than on total P uptake by plants. The absence of P fertilization increased the importance of AM fungi for P uptake, which markedly reduced soil extractable P under AM plants during growth. This effect was strongest for LNS, the most mycorrhizae-dependent hybrid, intermediate for LRS, and not significant for the commercial hybrid P3979, which did not respond to AM inoculation. Key words: Arbuscular mycorrhizal fungi, extraradical hyphae, maize hybrid,plant biomass, P uptake, soil extractable P

2008 ◽  
Vol 88 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Christine P Landry ◽  
Chantal Hamel ◽  
Anne Vanasse

Ridge-tilled corn (Zea mays L.) could benefit from arbuscular mycorrhizal (AM) fungi. Under low soil disturbance, AM hyphal networks are preserved and can contribute to corn nutrition. A 2-yr study was conducted in the St. Lawrence Lowlands (Quebec, Canada) to test the effects of indigenous AM fungi on corn P nutrition, growth, and soil P in field cropped for 8 yr under ridge-tillage. Phosphorus treatments (0, 17, 35 kg P ha-1) were applied to AM-inhibited (AMI) (fungicide treated) and AM non-inhibited (AMNI) plots. Plant tissue and soil were sampled 22, 48 and 72 days after seeding (DAS). P dynamics was monitored in situ with anionic exchange membranes (PAEM) from seeding to the end of July. AMNI plants showed extensive AM colonization at all P rates. At 22 DAS, AMI plants had decreased growth in the absence of P inputs, while AMNI plants had higher dry mass (DM) and P uptake in unfertilized plots. The PAEM was lower in the AMNI unfertilized soils in 1998 and at all P rates in 1999, indicating an inverse relationship between P uptake and PAEM. At harvest, grain P content of AMNI plants was greater than that of AMI plants. In 1998, only AMI plants had decreased yield in the absence of P fertilization. In 1999, AMNI plants produced greater grain yield than AMI plants at all P rates. AM fungi improve the exploitation of soil P by corn thereby maintaining high yields while reducing crop reliance on P inputs in RT. Key words: Arbuscular mycorrhizae, ridge-tillage, soil P dynamics, corn, P nutrition


1986 ◽  
Vol 1 (3) ◽  
pp. 108-114 ◽  
Author(s):  
Laura L. Lengnick ◽  
Larry D. King

AbstractSoils from adjoining farms, one managed organically and the other managed conventionally, were used in a greenhouse study to compare soil P status and the efficiency of concentrated superphosphate (CSP) and North Carolina rock phosphate (RP). Soil and plant parameters were measured as indicators of levels of soil P forms and availability of soil P to soybeans (Glycine max L.). Management did not affect dry matter yield of soybean plants. Conventional management resulted in higher P concentration in the plant and higher P uptake when CSP was the P source. However, when RP was the source, management effect was not significant. RP was only 15% as effective as CSP in increasing yield. When no P was applied, organic management resulted in greater total soil P, organic P, and Ca phosphate (CaP); conventional management resulted in greater Al and Fe phosphate (AlFeP) and occluded AlFeP (OcP). Addition of CSP increased AlFeP and OcP. Addition of RP increased CaP. CSP was more effective than RP in increasing extractable soil P. Multiple regression analysis showed that extractable P was related to AlFeP when CSP was the P source and to CaP when RP was the source. Yield was related to extractable P when CSP was the P source but when RP was the source, no significant regression models were found for yield.


2001 ◽  
Vol 28 (5) ◽  
pp. 391 ◽  
Author(s):  
Sarah M. Ayling ◽  
Sally E. Smith ◽  
F. Andrew Smith

The effect of colonisation by arbuscular mycorrhizal (AM) fungi on the relationship between phosphorus (P) uptake and root membrane electric potential difference (p.d.) was investigated in leek (Allium porrum L.). Plants were grown, with or without the AM fungus Scutellospora calospora (Nicolson and Gerdemann) Walker and Sanders, in soil. P uptake and root p.d. were correlated; plants with the highest P concentration in the shoot had the most negative p.d. This relationship was strong in non-mycorrhizal leeks (r2 = 84–98%), but weaker in mycorrhizal leeks (r2 = 55–64%), consistent with the idea that in mycorrhizal roots the fungal hyphae are the principal site of P uptake.


2003 ◽  
Vol 83 (4) ◽  
pp. 737-744 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
A. A. Elmi ◽  
T. Zhang ◽  
D. L. Smith

Arbuscular mycorrhizal fungi (AMF) have a large enhancing effect on the P uptake capacity of host plants, which could make possible the production of high crop yields on soil with reduced level of available P, or could help reduce the P level in rich soils, thereby reducing the risk of P loss to the environment. A field experiment was conducted in Ste-Anne-de-Bellevue, Quebec, Canada, on a loamy sand in 1997 and a fine sandy loam in 1998 to assess the impact of indigenous AMF-maize hybrid combinations on soil available P level. The experiment had three factors organized in a split-split plot design. There were two soil fumigation levels (fumigated and non-fumigated) randomized in the main plots, three P fertilizer rates (0, 60, and 120 kg ha-1) randomized in the sub-plots and three maize (Zea mays L.) hybrids with contrasting genotypes [two newly developed leafy hybrids, Leafy normal stature (LNS) and Leafy reduced stature (LRS), and a commercial hybrid, Pioneer 3979 (P3979)], which were randomized in the sub-sub-plots. Soil extractable P, plant P content, plant dry mass, root colonization with AMF and extraradical hyphae were determined at the 6-leaf, 10-leaf, tasselling and silking stages of maize, and grain yield and total P in maize were determined at harvest. Soil fumigation to reduce AMF and P fertilization reduced the amount of indigenous mycorrhizal development in maize hybrids. The growth of LNS, the most mycorrhizae-dependent hybrid, was more supressed by fumigation than the growth of the other two hybrids. When the soil P level was low, plant dry mass, grain yield and total P content of LNS were higher in the non-fumigated plots than in the fumigated plots. Fumigation had a significant but smaller influence on soil extractable P level than on plant P uptake and growth. Soil extractable P was lower in non-fumigated plots than in fumigated plots from silking to the end of the growing season in 1997, only in non-fertilized plots growing LNS. Extraradical hyphae density was positively correlated with maize P uptake and negatively correlated with soil extractable P. This suggested that soil extractable P can be reduced through AMF-enhanced plant P uptake when soil available P conditions and host plant genotype are favourable to mycorrhizal development, and when P uptake enhancement is large. Key words: Arbuscular mycorrhizal fungi, maize hybrids, soil extractable P, P uptake, extraradical hyphae, root colonization, mycorrhizal dependency


2018 ◽  
Vol 6 (3) ◽  
pp. 236-242
Author(s):  
JEAN DAVIS ◽  
RICHARD J FLAVEL ◽  
GRAEME BLAIR

Separation of the phosphorus (P) contributions from soil, fertilizer and biosolids to plants has not been possible without the aid of radioisotopes. Dual labelling of soil with 32P and fertilizer with 33P isotopes has been used to partition the sources of P in maize (Zea mays) shoots and in soil P pools. Biosolids containing 4.1% P that had been prepared using Fe and Al were applied to a Kurosol soil from Goulburn, NSW, Australia. The biosolids were applied at five rates up to 60 dry t/ha with and without P fertilizer. Phosphorus derived from fertilizer was determined directly with33 P and that from soil by32 P reverse dilution. Phosphorus derived from biosolids was estimated as the difference between total P and that derived from the soil plus fertilizer calculated from isotope data. Yield and P content of maize shoots increased linearly with the rate of biosolidsapplication. The proportion of P in the plant derived from biosolids also increased with application rate up to 88% for the soil receiving biosolids at 60 dry t/ha with no fertilizer. The corresponding value with fertilizer applied at 80 kg P/ha was 69%. The proportion of P in the maize shoots derived from soil and fertilizer decreased as biosolids application rate increased. Soil total P, bicarbonate extractable P, Al-P, Fe-P and Ca-P increased with biosolids application rate. The increase in plant P uptake and in bicarbonate extractable P in the soil shows that biosolids P provides a readily available source of P. A decrease in uptake of fertilizer and soil P with increasing biosolids application is attributed to the decrease in the proportion of P from these sources in the total pool of available P, rather than to immobilization of P by Fe and Al in the biosolids.


2008 ◽  
Vol 35 (2) ◽  
pp. 124 ◽  
Author(s):  
Huiying Li ◽  
Sally E. Smith ◽  
Kathy Ophel-Keller ◽  
Robert E. Holloway ◽  
F. Andrew Smith

We investigated the roles of naturally occurring arbuscular mycorrhizal (AM) fungi in phosphorus (P) uptake by wheat (Triticum aestivum L.) in a calcareous, P-fixing soil. Plants grew in a main pot containing autoclaved soil (NM) or autoclaved soil mixed with non-autoclaved soil (to provide inoculum of naturally occurring AM fungi; AM). Granular (GP; monoammonium phosphate) or fluid (FP; ammonium polyphosphate) fertilisers were applied in small compartments (PCs) within a main pot, to which either roots plus hyphae (–Mesh) or hyphae only (+Mesh) had access. Controls received no additional P (NP). Inoculated plants were well colonised by AM fungi. AM growth depressions were observed in –Mesh treatments with NP and GP, but not with FP. Neither AM growth nor P responses were observed in +Mesh treatments. AM plants had much higher P uptake than NM plants, regardless of the P and mesh treatments. Total P uptake by NM plants increased with FP in –Mesh, but was unaffected by either form of P in the +Mesh treatments. Total P uptake by AM plants was similar between –Mesh and +Mesh treatments, regardless of applied P, showing that roots plus hyphae and hyphae alone have the same ability to obtain P. Thus, hyphae can take over the roles of roots in P uptake when roots are not able to access P sources.


2021 ◽  
Vol 12 ◽  
Author(s):  
Letian Wang ◽  
Xihe Wang ◽  
Baidengsha Maimaitiaili ◽  
Arjun Kafle ◽  
Khuram Shehzad Khan ◽  
...  

Maximizing the function of indigenous arbuscular mycorrhizal (AM) fungi by choosing specific crop genotypes offers one of the few untapped opportunities to improve the sustainability of agriculture. In this study, the differences in mycorrhizal responsiveness (MR) in plant growth and shoot phosphorus (P) content among cotton (Gossypium spp. L.) genotypes from different release dates were compared and then the relationships between MR and P uptake-related traits were determined. The experimental design in a greenhouse included 24 genotypes released from 1950 to present in Xinjiang Province, inoculation with or without AM fungi, and P levels (15 and 150 mg P kg–1 added as KH2PO4). Results showed that the modern cotton genotypes exhibited a higher degree of mycorrhizal colonization, the hyphal length density (HLD), and mycorrhizae-induced changes in shoot growth than the old genotypes when inoculated with indigenous AM fungi at both the P levels. Moreover, MR was highly correlated with the HLD at low P levels and the HLD may provide useful insights for future cotton breeding aimed at delivering crop genotypes that can benefit more from AM fungi.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lina Bernaola ◽  
Michael J. Stout

Abstract The effect of soil type on establishment of arbuscular mycorrhizal (AM) fungi, and their effects on plant growth and resistance to rice pests are poorly understood. We investigated the effects of inoculation with AM fungi on rice plants in two different unsterilized field soils under greenhouse and field conditions in two consecutive years in Louisiana, United States. We tested whether inoculation with AM fungi in the two soils changed plant biomass, nutrient concentration, resistance to pests, and yields. Inoculation with a commercial formulation of AM fungi increased root colonization by fungi in all soils, regardless of soil P availability; it also increased densities of root-feeding rice water weevil larvae and growth of leaf-feeding fall armyworm larvae, but these effects were soil-dependent. Inoculation with AM fungi had no effect on N and P concentrations or rice yields. The effect on plant biomass was also soil-dependent. Our study provides evidence for the first time that inoculation with AM fungi can increase colonization of roots of rice plants, but the effects of colonization on resistance to pests and plant biomass appear to be soil dependent. Moreover, the increased susceptibility to pests of rice colonized by AM fungi does not appear to be related to nutrient concentrations.


Soil Research ◽  
2006 ◽  
Vol 44 (3) ◽  
pp. 277 ◽  
Author(s):  
W. J. Dougherty ◽  
D. M. Nash ◽  
D. J. Chittleborough ◽  
J. W. Cox ◽  
N. K. Fleming

The forms and stratification of soil phosphorus (P) and their relationship to mobile forms of P were investigated in soils collected from a subcatchment used for grazing of dairy cattle in the Adelaide Hills, South Australia. Phosphorus in the soils was highly stratified. The concentration of calcium chloride extractable P in the 0–0.01 m increment was, on average, 5.7 times greater than in the 0.05–0.10 m increment. Organic P (% of total P) in the top 0.01 m was significantly (P < 0.001) related to soil P content such that low P soils (total P of ~600 mg/kg) had high proportions of Po (~65%), whereas high P soils (total P of ~2000 mg/kg) had low proportions (~25%) of Po. Runoff P from these soils was predominantly (86%) dissolved (i.e. <0.45 μm). There was a significant (P < 0.001) exponential relationship between Olsen P in the top 0.01 m and dissolved P concentration in runoff. The form of dissolved P in runoff from soil in repacked trays was also significantly (P < 0.001) related to soil P. Runoff from low P soils (high Po) had high proportions (>50%) of dissolved unreactive P (DUP), whereas runoff from high P soils (low Po) had low proportions of DUP (<10%). Ultrafiltration of runoff samples revealed that 94 and 65% of the dissolved reactive P and DUP, respectively, was subcolloidal (i.e. <1 nm). These results highlight the relationship between soil fertility, the forms of soil P, and the concentrations and forms of P mobilised in runoff. Such relationships need to be considered in further studies of P mobilisation and the subsequent development of strategies designed to reduce runoff P concentrations.


2013 ◽  
Vol 64 (9) ◽  
pp. 881 ◽  
Author(s):  
Chaoyuan Zheng ◽  
Junling Zhang ◽  
Xiaolin Li

Arbuscular mycorrhizal (AM) fungi are known to facilitate effective acquisition of phosphorus (P) by host plants in low P soils. However, the contribution of mycorrhizal traits to high P-use efficiency in modern-bred maize genotypes is still not clear. In the present study one backcross maize inbred line 224 (bred for high P-use efficiency) was used as the host plant associated with AM fungal species (Rhizophagus irregularis or Glomus mosseae) grown at a range of soil P treatments (10, 20, 30, 40, 50, 100 mg P kg–1, Experiment 1) or foliar P applications (0, 0.025%, 0.5% m/v, Experiment 2). The experiments were to test the hypothesis whether the change point of the mycorrhizal growth and P responsiveness of 224, as well as the expression of ZEAma;Pht1;6 was at or near the optimal P supply level. In addition, different AM inoculants might differ in regulating P uptake of the host. Our results indicated that inbred line 224 was highly responsive to mycorrhizal inoculation. In Experiment 1, root colonisation rate, hyphal length density and alkaline phosphatase increased with the increase of soil P supply level. However, the mycorrhizal growth response (MGR) and P accumulation in shoot (MPR) were greatly affected by soil P supply level and varied between the two fungal species. Maize plants exhibited higher MGR and MPR at lower P supply when inoculated with R. irregularis, and at intermediate P supply when inoculated with G. mosseae. In Experiment 2, shoot P uptake was significantly increased by foliar P supply and inoculation, whereas shoot growth was significantly affected by P supply and the interaction. The expression of the AM-inducible Pi transporter gene ZEAma;Pht1;6 was neither significantly affected by soil (except at 100 mg P kg–1, Experiment 1) or foliar P supply level, nor by fungal species. Root P uptake efficiency (RPUE) was generally greatly increased by mycorrhizal colonisation at all P supply levels in both experiments, and significant correlations were observed between mycorrhizal variables and RPUE in Experiment 1. Our results indicate that the formation of mycorrhizal association could increase RPUE and thus may be partly attributed to high P-use efficiency of inbred line 224. The different responsiveness of mycorrhizal fungi to soil-available P implies the importance for the development of precision strategies to optimise the potential function of AM fungi under different P fertilisation management regime in agricultural soils.


Sign in / Sign up

Export Citation Format

Share Document