scholarly journals Neuronal activity causes a reciprocal cationic flux in the extracellular space in the brain: a hypothesis

Author(s):  
Nick J Beaumont

The fluid in the extracellular space around the neurons and glial cells is enclosed within the brain, kept separate from the circulation and the rest of the body-fluid. This brain interstitial fluid forms a distinct compartment; a sponge-like “inverse cell” that surrounds all the cells. During neuronal resting and action potentials, sodium and potassium ions shuttle into, and out of, this “Reciprocal Domain” within the brain. This localised flux of ions is the counterpart to all the neuronal electrochemical activity (having the same intensity and duration, at the same sites in the brain), so a complementary version of all that potential information is integrated into this space within the brain. This flux of cations in the Reciprocal Domain may indirectly influence neuronal activity in the brain, creating immensely complex feedback. This Reciprocal Domain is unified throughout the brain, and exists continuously throughout life. This model identifies which species have such Reciprocal Domains, and how many times similar systems evolved. This account of the Reciprocal Domain of the brain may have clinical implications; it could be vulnerable to disruption by chemical insult, traumatic injury or pathology. These are key characteristics of our core selves; this encourages the idea that this Reciprocal Domain makes a crucial contribution to the brain. This hypothesis is explored and developed here.

2015 ◽  
Author(s):  
Nick J Beaumont

The fluid in the extracellular space around the neurons and glial cells is enclosed within the brain, kept separate from the circulation and the rest of the body-fluid. This brain interstitial fluid forms a distinct compartment; a sponge-like “inverse cell” that surrounds all the cells. During neuronal resting and action potentials, sodium and potassium ions shuttle into, and out of, this “Reciprocal Domain” within the brain. This localised flux of ions is the counterpart to all the neuronal electrochemical activity (having the same intensity and duration, at the same sites in the brain), so a complementary version of all that potential information is integrated into this space within the brain. This flux of cations in the Reciprocal Domain may indirectly influence neuronal activity in the brain, creating immensely complex feedback. This Reciprocal Domain is unified throughout the brain, and exists continuously throughout life. This model identifies which species have such Reciprocal Domains, and how many times similar systems evolved. This account of the Reciprocal Domain of the brain may have clinical implications; it could be vulnerable to disruption by chemical insult, traumatic injury or pathology. These are key characteristics of our core selves; this encourages the idea that this Reciprocal Domain makes a crucial contribution to the brain. This hypothesis is explored and developed here.


2015 ◽  
Author(s):  
Nick J Beaumont

The fluid in the extracellular space around the neurons and glial cells is enclosed within the brain, kept separate from the circulation and the rest of the body-fluid. This brain interstitial fluid forms a distinct compartment; a sponge-like “inverse cell” that surrounds all the cells. During neuronal resting and action potentials, sodium and potassium ions shuttle into, and out of, this “Reciprocal Domain” within the brain. This localised flux of ions is the counterpart to all the neuronal electrochemical activity (having the same intensity and duration, at the same sites in the brain), so a complementary version of all that potential information is integrated into this space within the brain. This flux of cations in the Reciprocal Domain may indirectly influence neuronal activity in the brain, creating immensely complex feedback. This Reciprocal Domain is unified throughout the brain, and exists continuously throughout life. This model identifies which species have such Reciprocal Domains, and how many times similar systems evolved. This account of the Reciprocal Domain of the brain may have clinical implications; it could be vulnerable to disruption by chemical insult, traumatic injury or pathology. These are key characteristics of our core selves; this encourages the idea that this Reciprocal Domain makes a crucial contribution to the brain. This hypothesis is explored and developed here.


2015 ◽  
Author(s):  
Nick J Beaumont

The fluid in the extracellular space around the neurons and glial cells is enclosed within the brain, kept separate from the circulation and the rest of the body-fluid. This brain interstitial fluid forms a distinct compartment; a sponge-like “inverse cell” that surrounds all the cells. During neuronal resting and action potentials, sodium and potassium ions shuttle into, and out of, this “Reciprocal Domain” within the brain. This localised flux of ions is the counterpart to all the neuronal electrochemical activity (having the same intensity and duration, at the same sites in the brain), so a complementary version of all that potential information is integrated into this space within the brain. This flux of cations in the Reciprocal Domain may indirectly influence neuronal activity in the brain, creating immensely complex feedback. This Reciprocal Domain is unified throughout the brain, and exists continuously throughout life. This model identifies which species have such Reciprocal Domains, and how many times similar systems evolved. This account of the Reciprocal Domain of the brain may have clinical implications; it could be vulnerable to disruption by chemical insult, traumatic injury or pathology. These are key characteristics of our core selves; this encourages the idea that this Reciprocal Domain makes a crucial contribution to the brain. This hypothesis is explored and developed here.


2020 ◽  
Vol 2 (1) ◽  
pp. 26-31
Author(s):  
Sebastião David Santos-Filho

The contributions of Biophysics scientists measuring aspects of the membrane electricity have been so well thought of that multiple prizes have been given out in this field. The field has generated quantitative findings based on the Goldman field equation and the Nernst equation that provide understanding into the importance of sodium and potassium in cell signaling. The graded and action potentials that bring information in the interior the cell and all over the body are central in the considerations of the brain and the activities of muscle. This work covers the biophysics essential of these process.


2021 ◽  
Author(s):  
Barbora Kalocayova ◽  
Denisa Snurikova ◽  
Jana Vlkovicova ◽  
Veronika Navarova Stara ◽  
Dominika Michalikova ◽  
...  

Abstract Previously it was shown that for reduction of anxiety and stress of experimental animals, preventive handling seems to be one of the most effective methods. The present study was oriented on Na,K-ATPase, a key enzyme for maintaining proper concentrations of intracellular sodium and potassium ions. Malfunction of this enzyme has an essential role in the development of neurodegenerative diseases. It is known that this enzyme requires approximately 50% of the energy available to the brain. Therefore in the present study utilization of the energy source ATP by Na,K-ATPase in the frontal cerebral cortex, using the method of enzyme kinetics was investigated. As a model of neurodegeneration treatment with Trimethyltin (TMT) was applied. Daily handling (10 min/day) of healthy rats and rats suffering neurodegeneration induced by administration of TMT in a dose of (7.5 mg/kg), at postnatal days 60-102 altered the expression of catalytic subunits of Na,K-ATPase as well as kinetic properties of this enzyme in frontal cerebral cortex of adult male Wistar rats. Everyday handling of rats, beside the previously published beneficial effect on spatial memory was accompanied by improwed maintenance of sodium homeeostasis in frontal cortex of brains. The key system responsible for this proces, the Na,K-ATPase was able to utilize better the energy substrate ATP. In rats with TMT-induced neurodegeneration handling promoted the expresion of α2 isoform of the enzyme which is typical for glial cells. In healthy rats the handling was followed by increased expression α3 subunit which is typical for neurons.


2015 ◽  
Vol 26 (10) ◽  
pp. 1550112 ◽  
Author(s):  
James Christopher S. Pang ◽  
Johnrob Y. Bantang

We utilize the original Hodgkin–Huxley (HH) model to consider the effects of defective ion channels to the temporal response of neurons. Statistics of firing rate and inter-spike interval (ISI) reveal that production of action potentials (APs) in neurons is not sensitive to changes in membrane conductance for sodium and potassium ions, as well as to the reversal potential for sodium ions, as long as the relevant parameters do not exceed 13% from their normal levels. We also found that blockage of a critical fraction of either sodium or potassium channels (dependent on constant input current) respectively limits the firing activity or increases spontaneous spiking activity of neurons. Our model may be used to guide experiment designs related to ion channel control drug development.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Santosh Chandrasekaran ◽  
Matthew Fifer ◽  
Stephan Bickel ◽  
Luke Osborn ◽  
Jose Herrero ◽  
...  

AbstractAlmost 100 years ago experiments involving electrically stimulating and recording from the brain and the body launched new discoveries and debates on how electricity, movement, and thoughts are related. Decades later the development of brain-computer interface technology began, which now targets a wide range of applications. Potential uses include augmentative communication for locked-in patients and restoring sensorimotor function in those who are battling disease or have suffered traumatic injury. Technical and surgical challenges still surround the development of brain-computer technology, however, before it can be widely deployed. In this review we explore these challenges, historical perspectives, and the remarkable achievements of clinical study participants who have bravely forged new paths for future beneficiaries.


2021 ◽  
pp. 705-718
Author(s):  
Jamal F. Khattak ◽  
David B. Burkholder

An understanding of the definitions, classification, and key characteristics of seizures and epilepsy is vital in the initial approach to a patient presenting with seizures. Classifying seizures appropriately helps narrow the differential diagnosis and guide further testing, treatment, and prognosis. This chapter reviews the basic definitions and classifications of seizures and epilepsy and summarizes select epilepsy syndromes. A seizure is a transient occurrence of signs or symptoms due to abnormal, excessive, or synchronous neuronal activity in the brain.


1966 ◽  
Vol 112 (484) ◽  
pp. 269-276 ◽  
Author(s):  
David Murray Shaw ◽  
Alec Coppen

The ionic theory of cell excitability shows how impulses are generated, conducted and propagated by movements of ions between the cells and the extracellular fluid. It is known that changes in the concentration of sodium and potassium in either the extracellular water (E.C.W.) or the intracellular water (I.C.W.) may have a marked effect on the resting and action potentials of excitable cells. If affective disorders are manifestations of complex but reversible changes in brain excitability, hen these in turn might be caused by alterations in the concentration of electrolytes within the cells of the central nervous system (C.N.S.). Although it is not possible to measure the distribution of electrolytes specifically in the C.N.S. in man, it is possible to measure their distribution in the body as a whole. In previous papers we have shown that residual sodium (intracellular plus a small quantity of bone sodium) is increased by 50 per cent. in depression (Coppen and Shaw, 1963) and by nearly 200 per cent. in mania (Coppen, Shaw, Malleson and Costain, 1965). The present paper shows that there are also abnormalities in the distribution of potassium, the other main cation determining cell excitability, in patients suffering from severe depression.


2016 ◽  
pp. 92-97
Author(s):  
Jonathan Leicester

The selective nature of perception is noted, we only notice some things. The automatic monitoring of perception by belief is noted, and the possibility of mistaken judgements of perception. How sensory stimuli are picked up by sensory organs and transferred to the brain as trains of action potentials is understood, but how the brain transcodes these similar trains to the different perceptions of sight, sound, smell, taste, touch, and pain is unknown. There are mysterious elements in how perceptions are projected from the brain to surrounding space and to other parts of the body. This projection may be a factor in the intuition of dualism. The ineffable nature of perceptions is demonstrated. The chapter ends with a note on the nature of mental imagery and its role in thought.


Sign in / Sign up

Export Citation Format

Share Document