The Subtalar Joint Axis Locator

2006 ◽  
Vol 96 (3) ◽  
pp. 212-219 ◽  
Author(s):  
Simon K. Spooner ◽  
Kevin A. Kirby

A new clinical device, the subtalar joint axis locator, was created to track the three-dimensional location of the subtalar joint axis during weightbearing movements of the foot. The assumption was that if the anterior exit point of the subtalar joint axis is stationary relative to the dorsal aspect of the talar neck, then, by performing radiographs of the feet with the subtalar joint axis locator in place on the foot, the ability of the locator to track rotations and translations of the talar neck and thus the subtalar joint axis in space could be approximated. In this preliminary study of two adults, the subtalar joint axis locator accurately tracked the talar neck position during weightbearing rotational motions of the subtalar joint. The device was also used in a series of subjects to determine its dynamic capabilities. It is possible, then, that the subtalar joint axis locator can reliably track the spatial location of the subtalar joint axis during weightbearing movements of the foot. (J Am Podiatr Med Assoc 96(3): 212–219, 2006)

2005 ◽  
Vol 21 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Kristian M. O’Connor ◽  
Joseph Hamill

The ankle joint has typically been treated as a universal joint with moments calculated about orthogonal axes and the frontal plane moment generally used to represent the net muscle action about the subtalar joint. However, this joint acts about an oblique axis. The purpose of this study was to examine the differences between joint moments calculated about the orthogonal frontal plane axis and an estimated subtalar joint axis. Three-dimensional data were colected on 10 participants running at 3.6 m/s. Joint moments, power, and work were calculated about the orthogonal frontal plane axis of the foot and about an oblique axis representing the subtalar joint. Selected parameters were compared with a paired t-test (α = 0.05). The results indicated that the joint moments calculated about the two axes were characteristically different. A moment calculated about an orthogonal frontal plane axis of the foot resulted in a joint moment that was invertor in nature during the first half of stance, but evertor during the second half of stance. The subtalar joint axis moment, however, was invertor during most of the stance. These two patterns may result in qualitatively different interpretations of the muscular contributions at the ankle during the stance phase of running.


2001 ◽  
Vol 91 (9) ◽  
pp. 465-487 ◽  
Author(s):  
Kevin A. Kirby

A new theory of foot function based on the spatial location of the subtalar joint axis in relation to the weightbearing structures of the plantar foot is proposed. The theory relies on the concept of subtalar joint rotational equilibrium to explain how externally generated forces, such as ground reaction force, and internally generated forces, such as ligamentous and tendon tensile forces and joint compression forces, affect the mechanical behavior of the foot and lower extremity. The biomechanical effect of variations among individuals in the spatial location of the subtalar joint axis are explored, along with their clinical consequences, to offer an additional theory of foot function, which may improve on existing podiatric biomechanics theory. (J Am Podiatr Med Assoc 91(9): 465-487, 2001)


1992 ◽  
Vol 82 (1) ◽  
pp. 1-20 ◽  
Author(s):  
RD Phillips ◽  
RH Lidtke

The authors present a methodology to measure the frontal plane angular and linear displacement and the transverse plane angular displacement of subtalar joint movement. This method is combined with a modification of the Kirby method for determining the transverse plane projection of the subtalar joint axis onto the plantar foot. A mathematical model is then used to construct the subtalar joint axis into a three-dimensional linear equation. Data are obtained from an in vivo series of 62 feet that indicates that within acceptable clinical errors of measurement the subtalar joint is a ginglymus type of joint that moves around a single fixed axis. Results also indicate that the subtalar joint axis is more superior and lateral to the neutral foot than any previous studies on cadaver feet have shown. Finally, the authors show that once the subtalar joint axis can be accurately located, the torque on the joint axis produced by ground reactive forces and muscular forces can be computed.


2014 ◽  
Vol 104 (3) ◽  
pp. 238-246 ◽  
Author(s):  
Ken K. Van Alsenoy ◽  
Joris De Schepper ◽  
Derek Santos ◽  
Evie E. Vereecke ◽  
Kristiaan D'Août

Background Locating the position of the subtalar joint axis can be a predictive clinical variable in biomechanical analysis and a valuable tool in the design of functional foot orthoses. Before testing Kirby's palpation technique to locate the subtalar joint axis in cadavers, it was important to develop and test the experimental methods in a mechanical model in which the exact location of the hinge joint can be controlled. Methods Four testers determined the hinge joint location and moved it through its range of motion, capturing the movement of the joint axis using a kinematic model. The joint axis location was determined and validated by comparing the actual hinge joint location on the mechanical model with the location determined by the palpation technique described by Kirby in 1987 and the location determined by the helical joint axis method using three-dimensional kinematic data. Results The overall angles result in mean slopes and intersections of 87° and 92 mm, 86° and 97 mm, 85° and 92 mm, and 88° and 91 mm for testers 1, 2, 3, and 4, respectively. Testers 1 and 3 were able to determine the location to 1° and 1 mm accuracy, tester 2 to 0° and 4 mm, and tester 4 to 2° and 2 mm compared with the kinematic data. Conclusions The technique of determining the points of no rotation as described by Kirby could be validated by using a three-dimensional kinematic model to determine the helical axis.


2009 ◽  
Vol 30 (05) ◽  
pp. 432-438 ◽  
Author(s):  
Akira Goto ◽  
Hisao Moritomo ◽  
Tomonobu Itohara ◽  
Tetsu Watanabe ◽  
Kazuomi Sugamoto

2021 ◽  
Vol 11 (4) ◽  
pp. 1670
Author(s):  
Tetsuya Mimura ◽  
Shinpei Okawa ◽  
Hiroshi Kawaguchi ◽  
Yukari Tanikawa ◽  
Yoko Hoshi

Thyroid cancer is usually diagnosed by ultrasound imaging and fine-needle aspiration biopsy. However, diagnosis of follicular thyroid carcinomas (FTC) is difficult because FTC lacks nuclear atypia and a consensus on histological interpretation. Diffuse optical tomography (DOT) offers the potential to diagnose FTC because it can measure tumor hypoxia, while image reconstruction of the thyroid is still challenging mainly due to the complex anatomical features of the neck. In this study, we attempted to solve this issue by creating a finite element model of the human neck excluding the trachea (a void region). By reconstruction of the absorption coefficients at three wavelengths, 3D tissue oxygen saturation maps of the human thyroid are obtained for the first time by DOT.


Author(s):  
Hyun-Jae Cho ◽  
Jae-Yun Jeon ◽  
Sung-Jin Ahn ◽  
Sung-Won Lee ◽  
Joo-Ryun Chung ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii76-ii76
Author(s):  
Radhika Mathur ◽  
Sriranga Iyyanki ◽  
Stephanie Hilz ◽  
Chibo Hong ◽  
Joanna Phillips ◽  
...  

Abstract Treatment failure in glioblastoma is often attributed to intratumoral heterogeneity (ITH), which fosters tumor evolution and generation of therapy-resistant clones. While ITH in glioblastoma has been well-characterized at the genomic and transcriptomic levels, the extent of ITH at the epigenomic level and its biological and clinical significance are not well understood. In collaboration with neurosurgeons, neuropathologists, and biomedical imaging experts, we have established a novel topographical approach towards characterizing epigenomic ITH in three-dimensional (3-D) space. We utilize pre-operative MRI scans to define tumor volume and then utilize 3-D surgical neuro-navigation to intra-operatively acquire 10+ samples representing maximal anatomical diversity. The precise spatial location of each sample is mapped by 3-D coordinates, enabling tumors to be visualized in 360-degrees and providing unprecedented insight into their spatial organization and patterning. For each sample, we conduct assay for transposase-accessible chromatin using sequencing (ATAC-Seq), which provides information on the genomic locations of open chromatin, DNA-binding proteins, and individual nucleosomes at nucleotide resolution. We additionally conduct whole-exome sequencing and RNA sequencing for each spatially mapped sample. Integrative analysis of these datasets reveals distinct patterns of chromatin accessibility within glioblastoma tumors, as well as their associations with genetically defined clonal expansions. Our analysis further reveals how differences in chromatin accessibility within tumors reflect underlying transcription factor activity at gene regulatory elements, including both promoters and enhancers, and drive expression of particular gene expression sets, including neuronal and immune programs. Collectively, this work provides the most comprehensive characterization of epigenomic ITH to date, establishing its importance for driving tumor evolution and therapy resistance in glioblastoma. As a resource for further investigation, we have provided our datasets on an interactive data sharing platform – The 3D Glioma Atlas – that enables 360-degree visualization of both genomic and epigenomic ITH.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 145
Author(s):  
Jianwei Chen ◽  
Liangming Wang ◽  
Jian Fu ◽  
Zhiwei Yang

A complex wind field refers to the typical atmospheric disturbance phenomena existing in nature that have a great influence on the flight of aircrafts. Aimed at the issues involving large volume of data, complex computations and a single model in the current wind field simulation approaches for flight environments, based on the essential principles of fluid mechanics, in this paper, wind field models for two kinds of wind shear such as micro-downburst and low-level jet plus three-dimensional atmospheric turbulence are established. The validity of the models is verified by comparing the simulation results from existing wind field models and the measured data. Based on the principle of vector superposition, three wind field models are combined in the ground coordinate system, and a comprehensive model of complex wind fields is established with spatial location as the input and wind velocity as the output. The model is applied to the simulated flight of a rocket projectile, and the change in the rocket projectile’s flight attitude and flight trajectory under different wind fields is analyzed. The results indicate that the comprehensive model established herein can reasonably and efficiently reflect the influence of various complex wind field environments on the flight process of aircrafts, and that the model is simple, extensible, and convenient to use.


Author(s):  
Javier Rolda´n Mckinley ◽  
Carl Crane ◽  
David B. Dooner

This paper introduces a reconfigurable closed-loop spatial mechanism that can be applied to repetitive motion tasks. The concept is to incorporate five pairs of non-circular gears into a six degree-of–freedom closed-loop spatial chain. The gear pairs are designed based on given mechanism parameters and a user defined motion specification of a coupler link of the mechanism. It is shown in the paper that planar gear pairs can be used if the spatial closed-loop chain is comprised of six pairs of parallel joint axes, i.e. the first joint axis is parallel to the second, the third is parallel to the fourth, ..., and the eleventh is parallel to the twelfth. This paper presents the synthesis of the gear pairs that satisfy a specified three-dimensional position and orientation need. Numerical approximations were used in the synthesis the non-circular gear pairs by introducing an auxiliary monotonic parameter associated to each end-effector position to parameterize the motion needs. The findings are supported by a computer animation. No previous known literature incorporates planar non-circular gears to fulfill spatial motion generation needs.


Sign in / Sign up

Export Citation Format

Share Document