scholarly journals The preliminary study for three-dimensional alveolar bone morphologic characteristics for alveolar bone restoration

Author(s):  
Hyun-Jae Cho ◽  
Jae-Yun Jeon ◽  
Sung-Jin Ahn ◽  
Sung-Won Lee ◽  
Joo-Ryun Chung ◽  
...  
2021 ◽  
Vol 11 (4) ◽  
pp. 1670
Author(s):  
Tetsuya Mimura ◽  
Shinpei Okawa ◽  
Hiroshi Kawaguchi ◽  
Yukari Tanikawa ◽  
Yoko Hoshi

Thyroid cancer is usually diagnosed by ultrasound imaging and fine-needle aspiration biopsy. However, diagnosis of follicular thyroid carcinomas (FTC) is difficult because FTC lacks nuclear atypia and a consensus on histological interpretation. Diffuse optical tomography (DOT) offers the potential to diagnose FTC because it can measure tumor hypoxia, while image reconstruction of the thyroid is still challenging mainly due to the complex anatomical features of the neck. In this study, we attempted to solve this issue by creating a finite element model of the human neck excluding the trachea (a void region). By reconstruction of the absorption coefficients at three wavelengths, 3D tissue oxygen saturation maps of the human thyroid are obtained for the first time by DOT.


2011 ◽  
Vol 56 (3) ◽  
pp. 766-770 ◽  
Author(s):  
Delphine Tardivo ◽  
Julien Sastre ◽  
Michel Ruquet ◽  
Lionel Thollon ◽  
Pascal Adalian ◽  
...  

2006 ◽  
Vol 96 (3) ◽  
pp. 212-219 ◽  
Author(s):  
Simon K. Spooner ◽  
Kevin A. Kirby

A new clinical device, the subtalar joint axis locator, was created to track the three-dimensional location of the subtalar joint axis during weightbearing movements of the foot. The assumption was that if the anterior exit point of the subtalar joint axis is stationary relative to the dorsal aspect of the talar neck, then, by performing radiographs of the feet with the subtalar joint axis locator in place on the foot, the ability of the locator to track rotations and translations of the talar neck and thus the subtalar joint axis in space could be approximated. In this preliminary study of two adults, the subtalar joint axis locator accurately tracked the talar neck position during weightbearing rotational motions of the subtalar joint. The device was also used in a series of subjects to determine its dynamic capabilities. It is possible, then, that the subtalar joint axis locator can reliably track the spatial location of the subtalar joint axis during weightbearing movements of the foot. (J Am Podiatr Med Assoc 96(3): 212–219, 2006)


2013 ◽  
Vol 7 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Emi Yamashita-Mikami ◽  
Mikako Tanaka ◽  
Naoki Sakurai ◽  
Kazuho Yamada ◽  
Hayato Ohshima ◽  
...  

The subject was a 53-year-old male. An alveolar bone sample was obtained from the site of the lower left first molar, before dental implant placement. Although the details of the trabecular structure were not visible with conventional computed tomography, micro-computed tomography (microCT) three-dimensional images of the alveolar bone biopsy sample showed several plate-like trabeculae extending from the lingual cortical bone. Histological observations of the bone sample revealed trabeculae, cuboidal osteoblasts, osteoclasts and hematopoietic cells existing in the bone tissue at the implantation site. Bone metabolic markers and calcaneal bone density were all within normal ranges, indicating no acceleration of the patient’s bone metabolism.Using microCT, and histological and histomorphometrical techniques, a great deal of valuable information about the bone tissue was obtained from a biopsy sample extracted from the patient’s planned implant site.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3852
Author(s):  
Lulu Wang

The authors recently developed a two-dimensional (2D) holographic electromagnetic induction imaging (HEI) for biomedical imaging applications. However, this method was unable to detect small inclusions accurately. For example, only one of two inclusions can be detected in the reconstructed image if the two inclusions were located at the same XY plane but in different Z-directions. This paper provides a theoretical framework of three-dimensional (3D) HEI to accurately and effectively detect inclusions embedded in a biological object. A numerical system, including a realistic head phantom, a 16-element excitation sensor array, a 16-element receiving sensor array, and image processing model has been developed to evaluate the effectiveness of the proposed method for detecting small stroke. The achieved 3D HEI images have been compared with 2D HEI images. Simulation results show that the 3D HEI method can accurately and effectively identify small inclusions even when two inclusions are located at the same XY plane but in different Z-directions. This preliminary study shows that the proposed method has the potential to develop a useful imaging tool for the diagnosis of neurological diseases and injuries in the future.


Sign in / Sign up

Export Citation Format

Share Document