Can Taekwondo Footwear Affect Postural Stability in Young Adults?

2013 ◽  
Vol 103 (4) ◽  
pp. 291-296 ◽  
Author(s):  
Shirley S. M. Fong ◽  
Shamay S. M. Ng

Background: This study aims to investigate the effect of taekwondo footwear on unilateral stance stability and use of postural control strategies and to determine whether taekwondo footwear influences the somatosensory inputs for postural stability and postural strategies in young adults. Methods: A quasi-randomized crossover trial was conducted on 33 healthy young adults at a university research laboratory. Independent variables, including shoe conditions (shoes on and shoes off) and visual conditions (eyes open and eyes closed), were taken into account. The center of gravity (COG) sway velocity in unilateral stance and the strategy scores in the sensory organization test were measured. No intervention was given to the participants. Results: There was no significant interaction between the two factors (the shoe and visual conditions) for COG sway velocities (P = .447) and strategy scores (P = .320). The shoe condition was not significant in either COG sway velocity (P = .484) or strategy score (P = .126). The visual condition was significant for COG sway velocity (P < .001) but not for strategy score (P = .573). The mean ± SD COG sway velocity with eyes open was 0.7° ± 0.2°/sec and with eyes closed was 1.7° ± 0.6°/sec (P < .001). Conclusions: Taekwondo footwear is unlikely to affect somatosensory inputs and balance performance in young adults. (J Am Podiatr Med Assoc 103(4): 291–296, 2013)

Author(s):  
Carley Bowman ◽  
Aleena Jose ◽  
Martin G Rosario

Introduction: Most studies on postural deviations during single and dual tasks have been extensively studied in neuromuscular and older adult populations. Nevertheless, further research is warranted to identify whether such tasks can impose postural adaptations in young, healthy adults without sensory impairments. Aim: To assess postural stability modifications in young adults during single tasks and dual motor tasks (holding a cup filled with water) while concomitantly challenging the sensory systems. Materials and Methods: This was the cross-sectional study on 82 young adults (18-45 years old) from Texas Woman’s University (TWU) Health Science Center in Dallas, Texas, and surrounding areas. Standing postural control was measured by collecting total sway, direction of sway and velocity in the Anterior-Posterior (AP) and Medial-Lateral (ML) directions during different balance tasks. For single and dual tasks, the tests were performed with a bipedal stance on foam involving challenging the sensory input via Eyes Open (EO), Eyes Closed (EC), and head movements with eyes open (EO HUD) and closed (EC HUD). The dual motor tasks were similar to the single tasks with the addition of holding a cup full of water to split attention. Data were placed into the Statistical Package for Social Sciences (SPSS) Data Analysis 25.0 system and were analysed for repeated measures Analysis of Variance (ANOVA) analysis. Results: Eighty-two healthy young adults participated in this study (mean age of 24.6±2.7 years, 13 males and 69 females). An ANOVA analysis revealed that postural stability was considerably altered during motor tasks. Sway in the Antero-Posterior (AP) direction, and velocity of sway increased as the complexity of the tasks intensified. A substantial difference in total sway during single tasks when eyes were closed compared to eyes open (p-value <0.01) was noted. There was a significant difference in total sway (AP and ML) during eyes open (EOM) to eyes closed (ECM) and during eyes open with head moving up and down (EOM HUD) (p-value 0.001). There were significant differences in mean AP velocity during EO (0.11±0.12) compared to EC HUD (0.19±0.15), and when comparing EOM (0.07±0.04) to ECM HUD (0.13±0.08) (p=0.01) Conclusion: This study identified postural changes when comparing single and dual tasks in healthy young adults, and the outcomes of this study showed definite distinctions in postural responses during single and dual motor tasks.


2014 ◽  
Vol 30 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Thomas Muehlbauer ◽  
Claude Mettler ◽  
Ralf Roth ◽  
Urs Granacher

The purpose of this study was to compare static balance performance and muscle activity during one-leg standing on the dominant and nondominant leg under various sensory conditions with increased levels of task difficulty. Thirty healthy young adults (age: 23 ± 2 years) performed one-leg standing tests for 30 s under three sensory conditions (ie, eyes open/firm ground; eyes open/foam ground [elastic pad on top of the balance plate]; eyes closed/firm ground). Center of pressure displacements and activity of four lower leg muscles (ie, m. tibialis anterior [TA], m. soleus [SOL], m. gastrocnemius medialis [GAS], m. peroneus longus [PER]) were analyzed. An increase in sensory task difficulty resulted in deteriorated balance performance (P< .001, effect size [ES] = .57−2.54) and increased muscle activity (P< .001, ES = .50−1.11) for all but two muscles (ie, GAS, PER). However, regardless of the sensory condition, one-leg standing on the dominant as compared with the nondominant limb did not produce statistically significant differences in various balance (P> .05, ES = .06−.22) and electromyographic (P> .05, ES = .03−.13) measures. This indicates that the dominant and the nondominant leg can be used interchangeably during static one-leg balance testing in healthy young adults.


Author(s):  
Zachary A. M. Cordingley ◽  
Paolo Sanzo ◽  
Carlos Zerpa

Tai chi is effective for improving the postural stability of older adults, but the effects on healthy young adults has yet to be investigated. Currently, the use of virtual delivery platforms for various exercise prescriptions to patients has had to be quickly introduced related to the onset of the COVID-19 pandemic and physical distancing requirements. This study attempted to explore the pre-/post-test measures of postural stability from 15 healthy young adult participants under eyes open (EO) and eyes closed (EC) and firm/foam surface conditions after learning a battery of tai chi exercises and forms delivered by instructional video. Center of pressure-based measures of mean sway velocity (MSV) and 95% elliptical sway area (EA) were assessed. Three-way ANOVAs were conducted to determine if MSV and EA were significantly different across the eye conditions, surface conditions, and time. Both EA and MSV were found to significantly increase from EO to EC on a foam surface; however, only MSV under EC conditions was found to decrease significantly following the intervention.


2018 ◽  
Vol 30 (01) ◽  
pp. 1850014
Author(s):  
Chu-Fen Chang ◽  
Hui-Ji Fan ◽  
Hung-Bin Chen ◽  
Houu-Wooi Lim ◽  
Hsiao-Yuan Lee ◽  
...  

The aim of this study was to investigate the immediate effect of wearing the functional insoles with different slopes of forefoot wedges on postural stability in young adults during quiet stance. In this study, the functional insole was composed of a forefoot wedge and a medial arch support. Twelve healthy young adults (six males and six females) participated. Each subject wore sneakers with and without functional insole and stood as still as possible on a force plate with feet together, arms by side and head facing ahead for 60[Formula: see text]s, while eyes open and eyes closed, respectively. The functional insole was applied in the random sequence of no insole, wearing insole with a medial arch and a four-degree forefoot wedge, as well as wearing insole with a medial arch and an eight-degree forefoot wedge. The sway areas as well as the maximal excursions of the center of pressure (COP) in anterior–posterior (AP) and medial–lateral (ML) directions were used to evaluate the static postural stability. During stance with feet together and eyes closed, the sway area and maximal excursion of the COP in the AP direction were significantly decreased when wearing an eight-degree forefoot wedge functional insole. Since the reduced displacements of the COP indicated better postural control, it was suggested that the functional insole with an eight-degree forefoot wedge and a medial arch support might be beneficial to improve the postural stability in patients with impaired balance control, especially for whom having high risk of forward falls.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 58-64
Author(s):  
Amanda L Penko ◽  
Susan M Linder ◽  
Mandy Miller Koop ◽  
Tanujit Dey ◽  
Jay L Alberts

ABSTRACT Introduction Dual-task performance, in which an individual performs two tasks simultaneously, is compromised following mild traumatic brain injury (mTBI). Proficient dual-task performance is essential in a military setting for both military member safety and execution of skilled tasks. To address the unique needs of military members, a portable dual-task assessment was developed incorporating an auditory dual-task task as a novel assessment module utilizing mobile-device technology. The aim of this study was to develop and validate a dual-task mobile device-based application that accurately quantifies cognitive and motor function. Materials and Methods Fifty, healthy, military-age civilians completed three cognitive tasks in single- and dual-task conditions with eyes open and closed: visual Stroop, auditory Stroop at 1.5- and 2.5-second stimulus presentation, and number discrimination. All dual-task conditions required the maintenance of postural stability while simultaneously completing a cognitive task. Results There were no differences between single- and dual-task conditions for cognitive performance on any of the tests, and a ceiling effect was observed for the visual Stroop and auditory Stroop 1.5-second stimulus presentation (P &gt; .05). Significant differences in postural stability were observed between the eyes-open and eyes-closed conditions in all single- and dual-task conditions (P &lt; .01). Significant differences in postural stability were observed between the eyes-open single-task condition and all dual-task conditions (P &lt; .01). Conclusions Based on the performance of healthy young adults, the number discrimination task may be optimal for detecting subtle changes in dual-task performance. The detected differences found between the eyes-open and eyes-closed conditions provide discriminatory value and insight into the reliance of vision of postural stability performance. While dual-task cognitive performance was not observed in this healthy population, individuals with mTBI may exhibit decreased dual-task performance. The independent evaluation of cognitive and motor function under dual-task conditions has the potential to transform the management and treatment of mTBI.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 412
Author(s):  
Han-Ping Huang ◽  
Chang Francis Hsu ◽  
Yi-Chih Mao ◽  
Long Hsu ◽  
Sien Chi

Gait stability has been measured by using many entropy-based methods. However, the relation between the entropy values and gait stability is worth further investigation. A research reported that average entropy (AE), a measure of disorder, could measure the static standing postural stability better than multiscale entropy and entropy of entropy (EoE), two measures of complexity. This study tested the validity of AE in gait stability measurement from the viewpoint of the disorder. For comparison, another five disorders, the EoE, and two traditional metrics methods were, respectively, used to measure the degrees of disorder and complexity of 10 step interval (SPI) and 79 stride interval (SI) time series, individually. As a result, every one of the 10 participants exhibited a relatively high AE value of the SPI when walking with eyes closed and a relatively low AE value when walking with eyes open. Most of the AE values of the SI of the 53 diseased subjects were greater than those of the 26 healthy subjects. A maximal overall accuracy of AE in differentiating the healthy from the diseased was 91.1%. Similar features also exists on those 5 disorder measurements but do not exist on the EoE values. Nevertheless, the EoE versus AE plot of the SI also exhibits an inverted U relation, consistent with the hypothesis for physiologic signals.


2013 ◽  
Vol 26 (5) ◽  
pp. 465-482 ◽  
Author(s):  
Michelle L. Cadieux ◽  
David I. Shore

Performance on tactile temporal order judgments (TOJs) is impaired when the hands are crossed over the midline. The cause of this effect appears to be tied to the use of an external reference frame, most likely based on visual information. We measured the effect of degrading the external reference frame on the crossed-hand deficit through restriction of visual information across three experiments. Experiments 1 and 2 examined three visual conditions (eyes open–lights on, eyes open–lights off, and eyes closed–lights off) while manipulating response demands; no effect of visual condition was seen. In Experiment 3, response demands were altered to be maximally connected to the internal reference frame and only two visual conditions were tested: eyes open–lights on, eyes closed–lights off. Blindfolded participants had a reduced crossed-hands deficit. Results are discussed in terms of the time needed to recode stimuli from an internal to an external reference frame and the role of conflict between these two reference frames in causing this effect.


Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 89
Author(s):  
Albina Andreeva ◽  
Andrey Melnikov ◽  
Dmitry Skvortsov ◽  
Kadriya Akhmerova ◽  
Alexander Vavaev ◽  
...  

The effects of different factors—such as age, sex, performance level, and athletic shoe features—on postural balance in athletes remain unclear. The main objective of our study is to identify the features of postural stability in athletes of different age, sex, performance level, and using different types of athletic shoes. This study assessed postural stability in athletes (n = 936, 6–47 years) in a normal bipedal stance with eyes open (EO) and eyes closed (EC). Postural stability was evaluated based on the center of pressure (COP), sway area (AS), and velocity (VCP) while standing on a stabiloplatform. Children (6–12 years) and teen athletes (13–17 years) showed reduced AS-EO (p < 0.01) and VCP-EO (p < 0.01) compared to control (n = 225, 7–30 years). In male and female athletes aged 18+, only VCP-EC was lower versus control. In females (13–17 and 18+), VCP-EO and EC were lower than in males (p < 0.05). Only in the Shooting group, the athletes’ performance levels had an effect on VCP-EO (p = 0.020). Long use of rigid athletic shoes with stiff ankle support was associated with reduced posture stability. Postural stability in athletes was mostly influenced by the athlete‘s age, and, to a lesser extent, by their sex, performance level, and athlete shoe features.


2020 ◽  
Vol 24 (1) ◽  
pp. 19-23
Author(s):  
Juhi K. Bharnuke ◽  
Rajani P. Mullerpatan ◽  
Claire Hiller

Indian classical dance involves a constant change of the base of support from stance to low jumps and spins along with intricate footwork. Graceful movement of the torso, shifting from side to side and turning around the axis of the spine, challenges balance. Yet, balance performance remains unexplored in Indian classical dancers. Therefore, the present study aimed to compare the standing balance of 36 active female dancers (18 to 25 years of age) who had performed Indian classical dance for a minimum of 10 years with 36 healthy age-matched women not involved in regular physical activity. Balance was evaluated in static and dynamic conditions of single and dual-limb stance on a force plate using center-of-pressure trajectory and the Star Excursion Balance Test (SEBT). Dancers demonstrated better balance on both instrumented and non-instrumented outcome variables: wide base of support with eyes open and with eyes closed; for 30-second single limb stance with eyes open and with eyes closed; for 13-second dual task in single limb stance; and for 22-second dual task in wide base of support. The SEBT revealed significantly better balance performance of dancers in the three directions tested: anterior, posteromedial, and posterolateral. There was also a strength component of the study on which the dancers achieved significantly higher scores than controls for the three muscle groups tested (gastrocsoleus, gluteus medius, and quadriceps), which can be attributed to their training. These findings can be used to recommend classical dance training to achieve the dual purpose of deriving better balance and stronger bodies and maintaining the Indian dance heritage.


2021 ◽  
Vol 3 ◽  
Author(s):  
Maria-Elissavet Nikolaidou ◽  
Vasilios Karfis ◽  
Maria Koutsouba ◽  
Arno Schroll ◽  
Adamantios Arampatzis

Dance has been suggested to be an advantageous exercise modality for improving postural balance performance and reducing the risk of falls in the older population. The main purpose of this study was to investigate whether visual restriction impacts older dancers and non-dancers differently during a quiet stance balance performance test. We hypothesized higher balance performance and greater balance deterioration due to visual restriction in dancers compared with non-dancers, indicating the superior contribution of the visual channel in the expected higher balance performances of dancers. Sixty-nine (38 men, 31 women, 74 ± 6 years) healthy older adults participated and were grouped into a Greek traditional dance group (n = 31, two to three times/week for 1.5 h/session, minimum of 3 years) and a non-dancer control group (n = 38, no systematic exercise history). The participants completed an assessment of one-legged quiet stance trials using both left and right legs and with eyes open while standing barefoot on a force plate (Wii, A/D converter, 1,000 Hz; Biovision) and two-legged trials with both eyes open and closed. The possible differences in the anthropometric and one-legged balance parameters were examined by a univariate ANOVA with group and sex as fixed factors. This ANOVA was performed using the same fixed factors and vision as the repeated measures factor for the two-legged balance parameters. In the one-legged task, the dance group showed significantly lower values in anteroposterior and mediolateral sway amplitudes (p = 0.001 and p = 0.035) and path length measured in both directions (p = 0.001) compared with the non-dancers. In the two-legged stance, we found a significant vision effect on path length (p &lt; 0.001) and anteroposterior amplitude (p &lt; 0.001), whereas mediolateral amplitude did not differ significantly (p = 0.439) between closed and open eyes. The dance group had a significantly lower CoP path length (p = 0.006) and anteroposterior (p = 0.001) and mediolateral sway amplitudes (p = 0.003) both in the eyes-open and eyes-closed trials compared with the control group. The superior balance performance in the two postural tasks found in the dancers is possibly the result of the coordinated, aesthetically oriented intersegmental movements, including alternations between one- and two-legged stance phases, that comes with dance. Visual restriction resulted in a similar deterioration of balance performance in both groups, thus suggesting that the contribution of the visual channel alone cannot explain the superior balance performance of dancers.


Sign in / Sign up

Export Citation Format

Share Document