scholarly journals Molecular insights into the origin of the Hox-TALE patterning system

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Bruno Hudry ◽  
Morgane Thomas-Chollier ◽  
Yael Volovik ◽  
Marilyne Duffraisse ◽  
Amélie Dard ◽  
...  

Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans.

Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 3935-3945 ◽  
Author(s):  
K.J. Millen ◽  
C.C. Hui ◽  
A.L. Joyner

To gain insight into the molecular genetic basis of cerebellar patterning, the expression patterns of many vertebrate homologues of Drosophila segment polarity genes were examined during normal and abnormal cerebellar development, including members of the En, Wnt, Pax, Gli and Dvl gene families. Five of these genes were found to show transient, spatially restricted patterns of expression. Strikingly, expression of En-2, En-1, Wnt-7B and Pax-2 defined eleven similar sagittal domains at 17.5 dpc, reminiscent of the transient sagittal domains of expression of Purkinje cell markers which have been implicated in cerebellar afferent patterning. Postnatally, transient anterior/posterior differences in expression were observed for En-2, En-1, Gli and Wnt-7B dividing the cerebellum into anterior and posterior regions. The expression patterns of these genes were altered in cerebella of En-2 homozygous mutant mice, which show a cerebellar foliation patterning defect. Strikingly, four of the Wnt-7B expression domains that are adjacent to the En-2 domains are lost in En-2 mutant embryonic cerebella. These studies provide the first evidence of a potential network of regulatory genes that establish spatial cues in the developing cerebellum by dividing it into a grid of positional information required for patterning foliation and afferents. Taken together with previous gene expression studies, our data suggests that eleven sagittal domains and at least two anterior/posterior compartments are the basic elements of spatial information in the cerebellum.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 333-346 ◽  
Author(s):  
A.C. Burke ◽  
C.E. Nelson ◽  
B.A. Morgan ◽  
C. Tabin

A common form of evolutionary variation between vertebrate taxa is the different numbers of segments that contribute to various regions of the anterior-posterior axis; cervical vertebrae, thoracic vertebrae, etc. The term ‘transposition’ is used to describe this phenomenon. Genetic experiments with homeotic genes in mice have demonstrated that Hox genes are in part responsible for the specification of segmental identity along the anterior-posterior axis, and it has been proposed that an axial Hox code determines the morphology of individual vertebrae (Kessel, M. and Gruss, P. (1990) Science 249, 347–379). This paper presents a comparative study of the developmental patterns of homeobox gene expression and developmental morphology between animals that have homologous regulatory genes but different morphologies. The axial expression boundaries of 23 Hox genes were examined in the paraxial mesoderm of chick, and 16 in mouse embryos by in situ hybridization and immunolocalization techniques. Hox gene anterior expression boundaries were found to be transposed in concert with morphological boundaries. This data contributes a mechanistic level to the assumed homology of these regions in vertebrates. The recognition of mechanistic homology supports the historical homology of basic patterning mechanisms between all organisms that share these genes.


2018 ◽  
Author(s):  
Alena Boos ◽  
Jutta Distler ◽  
Heike Rudolf ◽  
Martin Klingler ◽  
Ezzat El-Sherif

AbstractGap genes mediate the division of the anterior-posterior axis of insects into different fates through regulating downstream hox genes. Decades of tinkering the segmentation gene network of the long-germ fruit fly Drosophila melanogaster led to the conclusion that gap genes are regulated (at least initially) through a threshold-based French Flag model, guided by both anteriorly- and posteriorly-localized morphogen gradients. In this paper, we show that the expression patterns of gap genes in the intermediate-germ beetle Tribolium castaneum are mediated by a threshold-free ‘Speed Regulation’ mechanism, in which the speed of a genetic cascade of gap genes is regulated by a posterior gradient of the transcription factor Caudal. We show this by re-inducing the leading gap gene (namely, hunchback) resulting in the re-induction of the gap gene cascade at arbitrary points in time. This demonstrates that the gap gene network is self-regulatory and is primarily under the control of a posterior speed regulator in Tribolium and possibly all insects.


Development ◽  
2020 ◽  
Vol 148 (1) ◽  
pp. dev193813
Author(s):  
Alejandra C. López-Delgado ◽  
Irene Delgado ◽  
Vanessa Cadenas ◽  
Fátima Sánchez-Cabo ◽  
Miguel Torres

ABSTRACTVertebrate axial skeletal patterning is controlled by co-linear expression of Hox genes and axial level-dependent activity of HOX protein combinations. MEIS transcription factors act as co-factors of HOX proteins and profusely bind to Hox complex DNA; however, their roles in mammalian axial patterning remain unknown. Retinoic acid (RA) is known to regulate axial skeletal element identity through the transcriptional activity of its receptors; however, whether this role is related to MEIS/HOX activity remains unknown. Here, we study the role of Meis in axial skeleton formation and its relationship to the RA pathway in mice. Meis elimination in the paraxial mesoderm produces anterior homeotic transformations and rib mis-patterning associated to alterations of the hypaxial myotome. Although Raldh2 and Meis positively regulate each other, Raldh2 elimination largely recapitulates the defects associated with Meis deficiency, and Meis overexpression rescues the axial skeletal defects in Raldh2 mutants. We propose a Meis-RA-positive feedback loop, the output of which is Meis levels, that is essential to establish anterior-posterior identities and patterning of the vertebrate axial skeleton.


Development ◽  
1991 ◽  
Vol 112 (3) ◽  
pp. 791-806 ◽  
Author(s):  
S. Mackem ◽  
K.A. Mahon

Homeobox genes play a key role in specifying the segmented body plan of Drosophila, and recent work suggests that at least several homeobox genes may play a regulatory role during vertebrate limb morphogenesis. We have used degenerate oligonucleotide primers from highly conserved domains in the homeobox motif to amplify homeobox gene segments from chick embryo limb bud cDNAs using the polymerase chain reaction. Expression of a large number of homeobox genes (at least 17) is detected using this approach. One of these genes contains a novel homeobox loosely related to the Drosophila Abdominal B class, and was further analyzed by determining its complete coding sequence and evaluating its expression during embryogenesis by in situ hybridization. Based on sequence and expression patterns, we have designated this gene as Ghox 4.7 and believe that it is the chick homologue of the murine Hox 4.7 gene (formerly Hox 5.6). Ghox 4.7 is expressed primarily in limb buds during development and shows a striking spatial restriction to the posterior zone of the limb bud, suggesting a role in specifying anterior-posterior pattern formation. In chick, this gene also displays differences in expression between wing and leg buds, raising the possibility that it may participate in specifying limb-type identity.


Development ◽  
1999 ◽  
Vol 126 (15) ◽  
pp. 3303-3312 ◽  
Author(s):  
Q. Ch'ng ◽  
C. Kenyon

Hox genes pattern the fates of the ventral ectodermal Pn.p cells that lie along the anteroposterior (A/P) body axis of C. elegans. In these cells, the Hox genes are expressed in sequential overlapping domains where they control the ability of each Pn.p cell to fuse with the surrounding syncytial epidermis. The activities of Hox proteins are sex-specific in this tissue, resulting in sex-specific patterns of cell fusion: in hermaphrodites, the mid-body cells remain unfused, whereas in males, alternating domains of syncytial and unfused cells develop. We have found that the gene egl-27, which encodes a C. elegans homologue of a chromatin regulatory factor, specifies these patterns by regulating both Hox gene expression and Hox protein function. In egl-27 mutants, the expression domains of Hox genes in these cells are shifted posteriorly, suggesting that egl-27 influences A/P positional information. In addition, egl-27 controls Hox protein function in the Pn.p cells in two ways: in hermaphrodites it inhibits MAB-5 activity, whereas in males it permits a combinatorial interaction between LIN-39 and MAB-5. Thus, by selectively modifying the activities of Hox proteins, egl-27 elaborates a simple Hox expression pattern into complex patterns of cell fates. Taken together, these results implicate egl-27 in the diversification of cell fates along the A/P axis and suggest that chromatin reorganization is necessary for controlling Hox gene expression and Hox protein function.


Development ◽  
1990 ◽  
Vol 108 (3) ◽  
pp. 435-442 ◽  
Author(s):  
A.W. Puschel ◽  
R. Balling ◽  
P. Gruss

During development, positional values have to be assigned to groups of cells. The murine Hox genes are a class of genes that are predicted to be involved at some stage in this process. During embryogenesis they are expressed in distinct overlapping region- and stage-specific patterns and therefore must be regulated in response to positional information. In this study, we have analysed the activity of Hox1.1 promoter sequences in transgenic mice. The use of lacZ as a marker allows a detailed analysis of expression at the single cell level during early embryonic development. We show that 3.6 kbp of promoter and 1.7 kbp of 3′ sequences provide sufficient regulatory information to express a transgene in a spatial and temporal manner indistinguishable from the endogenous Hox1.1 gene during the period of development when Hox1.1 expression is established. The activation occurs in a strict order in specific ectodermal and mesodermal domains. Within each of these domains the transgene is activated over a period of four hours apparently randomly in single cells. In a following second period, Hox1.1 and transgene expression patterns diverge. In this period, transgene expression persists in many mesodermally derived cells that do not express Hox1.1 indicating the absence of a negative regulatory element in the transgene. The anterior boundary of transgene expression is identical to that of Hox1.1. However, no posterior boundary of transgene expression is set, suggesting that a separate element absent from the transgene specifies this boundary.


2019 ◽  
Author(s):  
Pin Huan ◽  
Qian Wang ◽  
Sujian Tan ◽  
Baozhong Liu

AbstractUnlike the Hox genes in arthropods and vertebrates, those in molluscs show diverse expression patterns and, with some exceptions, have generally been described as lacking the canonical staggered pattern along the anterior-posterior (AP) axis. This difference is unexpected given that almost all molluscs share highly conserved early development. Here, we show that molluscan Hox expression can undergo dynamic changes, which may explain why previous research observed different expression patterns. Moreover, we reveal that a key character of molluscan Hox expression is that the dorsal and ventral expression is dissociated. We then deduce a generalized molluscan Hox expression model, including conserved staggered Hox expression in the neuroectoderm on the ventral side and lineage-specific dorsal expression that strongly correlates with shell formation. This generalized model clarifies a long-standing debate over whether molluscs possess staggered Hox expression and it can be used to explain the diversification of molluscs. In this scenario, the dorsoventral dissociation of Hox expression allows lineage-specific dorsal and ventral patterning in different clades, which may have permitted the evolution of diverse body plans in different molluscan clades.


Development ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 289-296 ◽  
Author(s):  
C.J. Tabin

Limb development has long been a model system for studying vertebrate pattern formation. The advent of molecular biology has allowed the identification of some of the key genes that regulate limb morphogenesis. One important class of such genes are the homeobox-containing, or Hox genes. Understanding of the roles these genes play in development additionally provides insights into the evolution of limb pattern. Hox gene expression patterns divide the embryonic limb bud into five sectors along the anterior/posterior axis. The expression of specific Hox genes in each domain specifies the developmental fate of that region. Because there are only five distinct Hox-encoded domains across the limb bud there is a developmental constraint prohibiting the evolution of more than five different types of digits. The expression patterns of Hox genes in modern embryonic limb buds also gives clues to the shape of the ancestral fin field from which the limb evolved, hence elucidating the evolution of the tetrapod limb.


1995 ◽  
Vol 15 (10) ◽  
pp. 5811-5819 ◽  
Author(s):  
P S Knoepfler ◽  
M P Kamps

The vertebrate Hox genes, which represent a subset of all homeobox genes, encode proteins that regulate anterior-posterior positional identity during embryogenesis and are cognates of the Drosophila homeodomain proteins encoded by genes composing the homeotic complex (HOM-C). Recently, we demonstrated that multiple Hox proteins bind DNA cooperatively with both Pbx1 and its oncogenic derivative, E2A-Pbx1. Here, we show that the highly conserved pentapeptide motif F/Y-P-W-M-R/K, which occurs in numerous Hox proteins and is positioned 8 to 50 amino acids N terminal to the homeodomain, is essential for cooperative DNA binding with Pbx1 and E2A-Pbx1. Point mutational analysis demonstrated that the tryptophan and methionine residues within the core of this motif were critical for cooperative DNA binding. A peptide containing the wild-type pentapeptide sequence, but not one in which phenylalanine was substituted for tryptophan, blocked the ability of Hox proteins to bind cooperatively with Pbx1 or E2A-Pbx1, suggesting that the pentapeptide itself provides at least one surface through which Hox proteins bind Pbx1. Furthermore, the same peptide, but not the mutant peptide, stimulated DNA binding by Pbx1, suggesting that interaction of Hox proteins with Pbx1 through the pentapeptide motif raises the DNA-binding ability of Pbx1.


Sign in / Sign up

Export Citation Format

Share Document