scholarly journals Bacterial actin MreB forms antiparallel double filaments

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Fusinita van den Ent ◽  
Thierry Izoré ◽  
Tanmay AM Bharat ◽  
Christopher M Johnson ◽  
Jan Löwe

Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments of Caulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments.

2003 ◽  
Vol 185 (10) ◽  
pp. 3076-3080 ◽  
Author(s):  
Dominic Esposito ◽  
Gary F. Gerard

ABSTRACT The Escherichia coli nucleoid-associated protein Fis was previously shown to be involved in bacteriophage lambda site-specific recombination in vivo, enhancing the levels of both integrative recombination and excisive recombination. While purified Fis protein was shown to stimulate in vitro excision, Fis appeared to have no effect on in vitro integration reactions even though a 15-fold drop in lysogenization frequency had previously been observed in fis mutants. We demonstrate here that E. coli Fis protein does stimulate integrative lambda recombination in vitro but only under specific conditions which likely mimic natural in vivo recombination more closely than the standard conditions used in vitro. In the presence of suboptimal concentrations of Int protein, Fis stimulates the rate of integrative recombination significantly. In addition, Fis enhances the recombination of substrates with nonstandard topologies which may be more relevant to the process of in vivo phage lambda recombination. These data support the hypothesis that Fis may play an essential role in lambda recombination in the host cell.


Author(s):  
Mathias Gallique ◽  
Kuan Wei ◽  
Vimal B. Maisuria ◽  
Mira Okshevsky ◽  
Geoffrey McKay ◽  
...  

The emergence and spread of extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases (MBLs) or variant low affinity penicillin-binding proteins (PBPs) pose a major threat to our ability to treat bacterial infection using β-lactam antibiotics. Although combinations of β-lactamase inhibitors with β-lactam agents have been clinically successful, there are no MBL inhibitors in current therapeutic use. Furthermore, recent clinical use of new generation cephalosporins targeting PBP2a, an altered PBP, has led to the emergence of resistance to these antimicrobial agents. Previous work shows that natural polyphenols such as cranberry-extracted proanthocyanidins (cPAC) can potentiate non-β-lactam antibiotics against Gram-negative bacteria. This study extends beyond previous work by investigating the in vitro effect of cPAC in overcoming ESBL-, MBL- and PBP2a-mediated β-lactam resistance. The results show that cPAC exhibit variable potentiation of different β-lactams against β-lactam resistant Enterobacteriaceae clinical isolates as well as ESBL- and MBL-producing E. coli. We also discovered that cPAC have broad-spectrum inhibitory properties in vitro on the activity of different classes of β-lactamases, including CTX-M3 ESBL and IMP-1 MBL. Furthermore, we observe that cPAC selectively potentiate oxacillin and carbenicillin against methicillin-resistant but not methicillin-sensitive Staphylococci, suggesting that cPAC also interfere with PBP2a-mediated resistance. This study motivates the need for future work to identify the most bioactive compounds in cPAC and to evaluate their antibiotic potentiating efficacy in vivo. IMPORTANCE Emergence of β-lactam resistant Enterobacteriaceae and Staphylococci compromised the efficiency of β-lactams-based therapy. By acquisition of ESBLs, MBLs or PBPs, it is highly likely that bacteria become completely resistant to the most efficient β-lactam agents in the near future. In this study, we described a natural extract rich in proanthocyanidins which exerts adjuvant properties by interfering with two different resistance mechanisms. By their broad-spectrum inhibitory ability, cranberry-extracted proanthocyanidins could have the potential to enhance effectiveness of existing β-lactam agents.


2019 ◽  
Author(s):  
Chem Int

New copper complexes, [Cu(phen)2(Thy)]2Cl and [Cu(phen)2(Ad)]2Cl (phen = 1,10-phenantroline, Ad (Adenine, a purine nucleobase) and Thy (Thymine, a pyrimidine nucleobase)), were synthesized and characterized by atomic absorption spectroscopy (AAS), conductivity measurement, UV-visible and infrared (IR) techniques. The complexes were tested for their antimicrobial activity against two gram positive and two gram negative bacterial strains. The results of in vitro antimicrobial activities were compared with the commercially available antimicrobial agents (ciprofloxacin and chloramphenicol). This comparative study has demonstrated that [Cu(phen)2(Thy)]2Cl inhibited the growth of methicillin resistant Staphylococcus aureous (MRSA), Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumonia) better than chloramphenicol by 11.25%, 19.41% and 25.35%, respectively. It also showed better activities than ciprofloxacine on MRSA and K. pneumoniae by 2.50% and 12.13%, respectively. Similarly, [Cu(phen)2(Ad)]2Cl demonstrated better inhibitions than chloramphenicol against MRSA, E. coli and K. pneumoniae by 11.24%, 2.48% and 9.06%, respectively. Therefore, after in vivo cytotoxicity investigations, these complexes could be considered as potential antimicrobial agents.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 185 ◽  
Author(s):  
Shukho Kim ◽  
Jung Hwa Woo ◽  
So Hyun Jun ◽  
Dong Chan Moon ◽  
Suk-Kyung Lim ◽  
...  

The increasing prevalence of antimicrobial resistance and the laborious development of novel antimicrobial agents have limited the options for effective antimicrobial therapy. The combination of previously used antimicrobial agents represents an alternative therapy for multidrug-resistant (MDR) pathogens. The objective of this study was to investigate the synergistic effect of a florfenicol (FFL)-based combination with other antimicrobial agents against MDR Escherichia coli isolates from livestock using checkerboard assays and murine infection models. The FFL/amikacin (AMK) and FFL/gentamicin (GEN) combinations showed synergy against 10/11 and 6/11 MDR E. coli isolates in vitro, respectively. The combination of FFL with aminoglycosides (AMK or GEN) exhibited a better synergistic effect against MDR E. coli isolates than the cephalothin (CEF)/GEN or FFL/CEF combinations. The combination of FFL with AMK or GEN could reduce the emergence of resistant mutants in vitro. The FFL/AMK combination showed a higher survival rate of mice infected with MDR E. coli isolates than FFL or AMK alone. In summary, the combination of FFL with aminoglycosides (AMK or GEN) is highly effective against MDR E. coli isolates both in vitro and in vivo. Our findings may contribute to the discovery of an effective combination regimen against MDR E. coli infections in veterinary medicine.


2001 ◽  
Vol 183 (10) ◽  
pp. 3055-3064 ◽  
Author(s):  
David E. Nelson ◽  
Kevin D. Young

ABSTRACT Escherichia coli has 12 recognized penicillin binding proteins (PBPs), four of which (PBPs 4, 5, and 6 and DacD) havedd-carboxypeptidase activity. Although the enzymology of the dd-carboxypeptidases has been studied extensively, the in vivo functions of these proteins are poorly understood. To explain why E. coli maintains four independent loci encoding enzymes of considerable sequence identity and comparable in vitro activity, it has been proposed that thedd-carboxypeptidases may substitute for one another in vivo. We tested the validity of this equivalent substitution hypothesis by investigating the effects of these proteins on the aberrant morphology of ΔdacA mutants, which produce no PBP 5. Although cloned PBP 5 complemented the morphological phenotype of a ΔdacA mutant lacking a total of seven PBPs, controlled expression of PBP 4, PBP 6, or DacD did not. Also, a truncated PBP 5 protein lacking its amphipathic C-terminal membrane binding sequence did not reverse the morphological defects and was lethal at low levels of expression, implying that membrane anchoring is essential for the proper functioning of PBP 5. By examining a set of mutants from which multiple PBP genes were deleted, we found that significant morphological aberrations required the absence of at least three different PBPs. The greatest defects were observed in cells lacking, at minimum, PBPs 5 and 6 and one of the endopeptidases (either PBP 4 or PBP 7). The results further differentiate the roles of the low-molecular-weight PBPs, suggest a functional significance for the amphipathic membrane anchor of PBP 5 and, when combined with the recently determined crystal structure of PBP 5, suggest possible mechanisms by which these PBPs may contribute to maintenance of a uniform cell shape in E. coli.


2015 ◽  
Vol 198 (3) ◽  
pp. 486-497 ◽  
Author(s):  
Neeraja Chilukoti ◽  
C. M. Santosh Kumar ◽  
Shekhar C. Mande

ABSTRACTIntracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions between three structural domains of GroEL are anchored at two hinges. Although hinges are known to be critical for mediating the communication between different domains of GroEL, the relative importance of hinges on GroEL oligomeric assembly, ATPase activity, conformational changes, and functional activity is not fully characterized. We have exploited the inability ofMycobacterium tuberculosisGroEL2 to functionally complement anEscherichia coligroELmutant to address the importance of hinge residues in the GroEL mechanism. Various chimeras ofM. tuberculosisGroEL2 andE. coliGroEL allowed us to understand the role of hinges and dissect the consequences of oligomerization and substrate binding capability on conformational transitions. The present study explains the concomitant conformational changes observed with GroEL hinge variants and is best supported by the normal mode analysis.IMPORTANCEConformational changes and allosteric transitions are hallmarks of the chaperonin mechanism. We have exploited the inability ofM. tuberculosisGroEL2 to functionally complement a strain ofE. coliin whichgroELexpression is repressed to address the importance of hinges. The significance of conservation at the hinge regions stands out as a prominent feature of the GroEL mechanism in binding to GroES and substrate polypeptides. The hinge residues play a significant role in the chaperonin activityin vivoandin vitro.


2008 ◽  
Vol 191 (2) ◽  
pp. 525-532 ◽  
Author(s):  
Jennifer McPartland ◽  
Lucia B. Rothman-Denes

ABSTRACT Unlike other characterized phages, the lytic coliphage N4 must inject the 360-kDa virion RNA polymerase (vRNAP), in addition to its 72-kbp genome, into the host for successful infection. The process of adsorption to the host sets up and elicits the necessary conformational changes in the virion to allow genome and vRNAP injection. Infection of suppressor and nonsuppressor strains, Escherichia coli W3350 supF and E. coli W3350, with a mutant N4 isolate (N4am229) harboring an amber mutation in Orf65 yielded virions containing (N4gp65+) and lacking (N4gp65−) gp65, respectively. N4gp65+ but not N4gp65− phage was able to adsorb to the host. Recombinant gp65 with a hexahistidine tag at the N terminus or hexahistidine and c-myc tags at the C terminus was able to complement N4gp65− virions in vivo and in vitro. Immunogold detection of gp65 in vivo complemented virions revealed its localization at the N4 tail. Finally, we show both in vitro and in vivo that gp65 interacts with the previously determined N4 outer membrane receptor, NfrA.


1998 ◽  
Vol 42 (2) ◽  
pp. 414-418 ◽  
Author(s):  
F. Fuentes ◽  
J. Izquierdo ◽  
M. M. Martín ◽  
M. L. Gomez-Lus ◽  
J. Prieto

ABSTRACT Investigations of pharmacodynamic parameters (postantibiotic effect [PAE], sub-MIC effects [SMEs], etc.) have been progressively employed for the design of dosing schedules of antimicrobial agents. However, there are fewer in vivo than in vitro data, probably because of the simplicity of the in vitro procedures. In this study, we have investigated the in vitro PAE, SME, and previously treated (postantibiotic [PA]) SME (1/2 MIC, 1/4 MIC and 1/8 MIC) of azithromycin and isepamicin against standard strains ofStaphylococcus aureus and Escherichia coliby using centrifugation to remove the antibiotics. In addition, the in vivo PAE and SME have been studied with the thigh infection model in neutropenic mice. Finally, in vivo killing curves with two dosing schedules were determined to examine whether the PAE can cover the time that antimicrobial agents are below the MIC. The two antimicrobial agents induced moderate-to-high in vitro PAEs, SMEs, and PA SMEs against S. aureus (>8 h) andE. coli (3.38 to >7.64 h). The in vivo PAEs were also high (from 3.0 to 3.6 h), despite the fact that isepamicin had lower times above the MIC in serum. Only azithromycin showed a high in vivo SME against the two strains (1.22 and 1.75 h), which indicated that the in vivo PAEs were possibly overestimated. In the killing kinetics, no great differences (<0.5 log10) were observed between the schedule that took the PAE into account and the continuous administration of doses. These results are comparable with those of other authors and suggest that these antimicrobial agents could be administered at longer intervals without losing effectiveness.


1999 ◽  
Vol 181 (19) ◽  
pp. 6053-6062 ◽  
Author(s):  
Stephen A. Sciochetti ◽  
Patrick J. Piggot ◽  
David J. Sherratt ◽  
Garry Blakely

ABSTRACT The Bacillus subtilis ripX gene encodes a protein that has 37 and 44% identity with the XerC and XerD site-specific recombinases of Escherichia coli. XerC and XerD are hypothesized to act in concert at the dif site to resolve dimeric chromosomes formed by recombination during replication. Cultures of ripX mutants contained a subpopulation of unequal-size cells held together in long chains. The chains included anucleate cells and cells with aberrantly dense or diffuse nucleoids, indicating a chromosome partitioning failure. This result is consistent with RipX having a role in the resolution of chromosome dimers inB. subtilis. Spores contain a single uninitiated chromosome, and analysis of germinated, outgrowing spores showed that the placement of FtsZ rings and septa is affected in ripXstrains by the first division after the initiation of germination. The introduction of a recA mutation into ripXstrains resulted in only slight modifications of the ripXphenotype, suggesting that chromosome dimers can form in a RecA-independent manner in B. subtilis. In addition to RipX, the CodV protein of B. subtilis shows extensive similarity to XerC and XerD. The RipX and CodV proteins were shown to bind in vitro to DNA containing the E. coli dif site. Together they functioned efficiently in vitro to catalyze site-specific cleavage of an artificial Holliday junction containing adif site. Inactivation of codV alone did not cause a discernible change in phenotype, and it is speculated that RipX can substitute for CodV in vivo.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Sign in / Sign up

Export Citation Format

Share Document