scholarly journals A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Michaela Gschweitl ◽  
Anna Ulbricht ◽  
Christopher A Barnes ◽  
Radoslav I Enchev ◽  
Ingrid Stoffel-Studer ◽  
...  

Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets.

Science ◽  
2018 ◽  
Vol 362 (6419) ◽  
pp. 1177-1182 ◽  
Author(s):  
M. Steklov ◽  
S. Pandolfi ◽  
M. F. Baietti ◽  
A. Batiuk ◽  
P. Carai ◽  
...  

The leucine zipper–like transcriptional regulator 1 (LZTR1) protein, an adaptor for cullin 3 (CUL3) ubiquitin ligase complex, is implicated in human disease, yet its mechanism of action remains unknown. We found that Lztr1 haploinsufficiency in mice recapitulates Noonan syndrome phenotypes, whereas LZTR1 loss in Schwann cells drives dedifferentiation and proliferation. By trapping LZTR1 complexes from intact mammalian cells, we identified the guanosine triphosphatase RAS as a substrate for the LZTR1-CUL3 complex. Ubiquitome analysis showed that loss of Lztr1 abrogated Ras ubiquitination at lysine-170. LZTR1-mediated ubiquitination inhibited RAS signaling by attenuating its association with the membrane. Disease-associated LZTR1 mutations disrupted either LZTR1-CUL3 complex formation or its interaction with RAS proteins. RAS regulation by LZTR1-mediated ubiquitination provides an explanation for the role of LZTR1 in human disease.


2016 ◽  
Author(s):  
Michaela Gschweitl ◽  
Anna Ulbricht ◽  
Christopher A Barnes ◽  
Radoslav I Enchev ◽  
Ingrid Stoffel-Studer ◽  
...  

2019 ◽  
Author(s):  
Kara L. Phipps ◽  
Ketaki Ganti ◽  
Nathan T. Jacobs ◽  
Chung-Young Lee ◽  
Silvia Carnaccini ◽  
...  

AbstractInfection with a single influenza A virus (IAV) is only rarely sufficient to initiate productive infection. Here, we exploit both single-cell approaches and whole-animal systems to show that IAV reliance on multiple infection can form an important species barrier to infection. Namely, we find that H9N2 subtype viruses representative of those circulating widely at the poultry-human interface exhibit acute dependence on collective interactions in mammalian systems. This need for multiple infection is greatly reduced in the natural host. Quantification of incomplete viral genomes showed that their complementation accounts for the more moderate reliance on coinfection seen in avian cells, but not the added reliance seen in mammalian cells. This finding suggests an additional form of virus-virus interaction is needed to support infection in mammalian cells. Genetic mapping implicated the PA gene segment as a major driver of this phenotype and quantification of viral RNA synthesis indicated that both replication and transcription were affected. These findings indicate that multiple distinct mechanisms underlie IAV reliance on multiple infection and underscore the importance of virus-virus interactions in IAV infection, evolution and emergence.


2007 ◽  
Vol 88 (10) ◽  
pp. 2627-2635 ◽  
Author(s):  
Alexey A. Matskevich ◽  
Karin Moelling

In mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-α and IFN-β genes. Our results demonstrate that knockdown of a key RNAi component, Dicer, led to a modest increase of virus production and accelerated apoptosis of influenza A virus-infected cells. These effects were much weaker in the presence of IFN. The results also show that in both Vero cells and the IFN-producing alveolar epithelial A549 cell line influenza A virus targets Dicer at mRNA and protein levels. Thus, RNAi is involved in antiviral response, and Dicer is important for protection against influenza A virus infection.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Fangyi Zhang ◽  
Xuefeng Lin ◽  
Xiaodong Yang ◽  
Guangjian Lu ◽  
Qunmei Zhang ◽  
...  

Abstract Increasing evidence has indicated that microRNAs (miRNAs) have essential roles in innate immune responses to various viral infections; however, the role of miRNAs in H1N1 influenza A virus (IAV) infection is still unclear. The present study aimed to elucidate the role and mechanism of miRNAs in IAV replication in vitro. Using a microarray assay, we analyzed the expression profiles of miRNAs in peripheral blood from IAV patients. It was found that miR-132-3p was significantly up-regulated in peripheral blood samples from IAV patients. It was also observed that IAV infection up-regulated the expression of miR-132-3p in a dose- and time-dependent manner. Subsequently, we investigated miR-132-3p function and found that up-regulation of miR-132-3p promoted IAV replication, whereas knockdown of miR-132-3p repressed replication. Meanwhile, overexpression of miR-132-3p could inhibit IAV triggered INF-α and INF-β production and IFN-stimulated gene (ISG) expression, including myxovirus protein A (MxA), 2′,5′-oligoadenylate synthetases (OAS), and double-stranded RNA-dependent protein kinase (PKR), while inhibition of miR-132-3p enhanced IAV triggered these effects. Of note, interferon regulatory factor 1 (IRF1), a well-known regulator of the type I IFN response, was identified as a direct target of miR-132-3p during HIN1 IAV infection. Furthermore, knockdown of IRF1 by si-IRF1 reversed the promoting effects of miR-132-3p inhibition on type I IFN response. Taken together, up-regulation of miR-132-3p promotes IAV replication by suppressing type I IFN response through its target gene IRF1, suggesting that miR-132-3p could represent a novel potential therapeutic target of IAV treatment.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gergely Rona ◽  
Domenico Roberti ◽  
Yandong Yin ◽  
Julia K Pagan ◽  
Harrison Homer ◽  
...  

The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.


2019 ◽  
Vol 20 (24) ◽  
pp. 6261
Author(s):  
Min Guo ◽  
Jiawei Ni ◽  
Jie Yu ◽  
Jing Jin ◽  
Lingman Ma ◽  
...  

The currently available drugs against influenza A virus primarily target neuraminidase (NA) or the matrix protein 2 (M2) ion channel. The emergence of drug-resistant viruses requires the development of new antiviral chemicals. Our study applied a cell-based approach to evaluate the antiviral activity of a series of newly synthesized benzoic acid derivatives, and 4-(2,2-Bis(hydroxymethyl)-5-oxopyrrolidin-l-yl)-3-(5-cyclohexyl-4H-1,2,4-triazol-3-yl)amino). benzoic acid, termed NC-5, was found to possess antiviral activity. NC-5 inhibited influenza A viruses A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and oseltamivir-resistant mutant A/FM/1/47-H275Y (H1N1-H275Y) in a dose-dependent manner. The 50% effective concentrations (EC50) for H1N1 and H1N1-H275Y were 33.6 μM and 32.8 μM, respectively, which showed that NC-5 had a great advantage over oseltamivir in drug-resistant virus infections. The 50% cytotoxic concentration (CC50) of NC-5 was greater than 640 μM. Orally administered NC-5 protected mice infected with H1N1 and H1N1-H275Y, conferring 80% and 60% survival at 100 mg/kg/d, reducing body weight loss, and alleviating virus-induced lung injury. NC-5 could suppress NP and M1 protein expression levels during the late stages of viral biosynthesis and inhibit NA activity, which may influence virus release. Our study proved that NC-5 has potent anti-influenza activity in vivo and in vitro, meaning that it could be regarded as a promising drug candidate to treat infection with influenza viruses, including oseltamivir-resistant viruses.


Science ◽  
2014 ◽  
Vol 346 (6208) ◽  
pp. 473-477 ◽  
Author(s):  
Indranil Banerjee ◽  
Yasuyuki Miyake ◽  
Samuel Philip Nobs ◽  
Christoph Schneider ◽  
Peter Horvath ◽  
...  

2003 ◽  
Vol 71 (8) ◽  
pp. 4289-4296 ◽  
Author(s):  
H. H. Tong ◽  
J. P. Long ◽  
P. A. Shannon ◽  
T. F. DeMaria

ABSTRACT Real-time PCR and enzyme-linked immunosorbent assay were used to evaluate the ability of influenza A virus and Streptococcus pneumoniae opacity variants, either alone or in combination, to induce cytokine and chemokine genes in primary cultures of human middle ear epithelial (HMEE) cells. Following treatment with influenza A virus, the induction of gene expression, which occurred in a dose- and time-dependent manner, was strong for macrophage inflammatory protein 1α (MIP-1α) and MIP-1β; moderate for tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-8; and weak for IL-1β and monocyte chemotactic peptide 1 (MCP-1). Except for TNF-α, all the gene products were detected in the cell culture supernatants. In contrast, infection of HMEE cells with S. pneumoniae alone induced low levels of mRNA expression of MIP-1α and MIP-1β and did not significantly induce the transcription of the other cytokines and chemokines examined. However, both S. pneumoniae opacity variants increased mRNA expression of MIP-1α, MIP-1β, IL-6, and MCP-1 in HMEE cells activated by a prior influenza A virus infection compared to levels in cells treated with either agent alone. Up-regulation of IL-6, IL-8, and MCP-1 mRNA expression and production by the virus in combination with opaque S. pneumoniae was two- to threefold higher than that induced by the virus combined with the transparent S. pneumoniae variant. These data indicate that the activation of HMEE cells by influenza A virus enhances the induction of cytokine and chemokine gene transcripts by S. pneumoniae and that this effect appears to be most pronounced when S. pneumoniae is in the opaque phase.


Sign in / Sign up

Export Citation Format

Share Document