scholarly journals Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Matthew B Toomey ◽  
Olle Lind ◽  
Rikard Frederiksen ◽  
Robert W Curley ◽  
Ken M Riedl ◽  
...  

Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

2021 ◽  
Author(s):  
Kyle J. McCulloch ◽  
Aide Macias-Muñoz ◽  
Ali Mortazavi ◽  
Adriana D. Briscoe

AbstractColor vision modifications occur in animals via a process known as spectral tuning. In Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. In the H. melpomene and H. ismenius lineages, the UV2 receptor has been lost. Here we compare how loss of the UV2 photoreceptor has altered the visual system of these butterflies. We compare visual system evolution in three Heliconius butterfly species using a combination of intracellular recordings, ATAC-seq, and antibody staining. We identify several spectral tuning mechanisms including adaptive evolution of opsins, deployment of two types of filtering pigments, and co-expression of two distinct opsins in the same cell. Our data show that opsin gain and loss is driving rapid divergence in Heliconius visual systems via tuning of multiple spectral classes of photoreceptor in distinct lineages, potentially contributing to ongoing speciation in this genus.


2016 ◽  
Author(s):  
Matthew B Toomey ◽  
Olle Lind ◽  
Rikard Frederiksen ◽  
Robert W Curley ◽  
Ken M Riedl ◽  
...  

2010 ◽  
Vol 28 (1) ◽  
pp. 51-60 ◽  
Author(s):  
CHRISTIAN PULLER ◽  
SILKE HAVERKAMP

AbstractColor vision in mammals is based on the expression of at least two cone opsins that are sensitive to different wavelengths of light. Furthermore, retinal pathways conveying color-opponent signals are required for color discrimination. Most of the primates are trichromats, and “color-coded channels” of their retinas are unveiled to a large extent. In contrast, knowledge of cone-selective pathways in nonprimate dichromats is only slowly emerging, although retinas of dichromats like mice or rats are extensively studied as model systems for retinal information processing. Here, we review recent progress of research on color-coded pathways in nonprimate dichromats to identify differences or similarities between di- and trichromatic mammals. In addition, we applied immunohistochemical methods and confocal microscopy to retinas of different species and present data on their neuronal properties, which are expected to contribute to color vision. Basic neuronal features such as the “blue cone bipolar cell” exist in every species investigated so far. Moreover, there is increasing evidence for chromatic OFF channels in dichromats and retinal ganglion cells that relay color-opponent signals to the brain. In conclusion, di- and trichromats share similar retinal pathways for color transmission and processing.


Science ◽  
1991 ◽  
Vol 252 (5008) ◽  
pp. 971-974 ◽  
Author(s):  
M Neitz ◽  
J Neitz ◽  
G. Jacobs

2008 ◽  
Vol 25 (3) ◽  
pp. 433-440 ◽  
Author(s):  
M. RODRÍGUEZ-CARMONA ◽  
L.T. SHARPE ◽  
J.A. HARLOW ◽  
J.L. BARBUR

Generally women are believed to be more discriminating than men in the use of color names and this is often taken to imply superior color vision. However, if both X-chromosome linked color deficient males (∼8%) and females (<1%) as well as heterozygote female carriers (∼15%) are excluded from comparisons, then differences between men and women in red-green (RG) color discrimination have been reported as not being significant (e.g., Pickford, 1944; Hood et al., 2006). We re-examined this question by assessing the performance of 150 males and 150 females on the color assessment and diagnosis (CAD) test (Rodriguez-Carmona et al., 2005). This is a sensitive test that yields small color detection thresholds. The test employs direction-specific, moving, chromatic stimuli embedded in a background of random, dynamic, luminance contrast noise. A four-alternative, forced-choice procedure is employed to measure the subject's thresholds for detection of color signals in 16 directions in color space, while ensuring that the subject cannot make use of any residual luminance contrast signals. In addition, we measured the Rayleigh anomaloscope matches in a subgroup of 111 males and 114 females. All the age-matched males (30.8 ± 9.7) and females (26.7 ± 8.8) had normal color vision as diagnosed by a battery of conventional color vision tests. Females with known color deficient relatives were excluded from the study. Comparisons between the male and female groups revealed no significant differences in anomaloscope midpoints (p = 0.709), but a significant difference in matching ranges (p = 0.040); females on average tended to have a larger mean range (4.11) than males (3.75). Females also had significantly higher CAD thresholds than males along the RG (p = 0.0004), but not along the yellow-blue (YB) discrimination axis. The differences between males and females in RG discrimination may be related to the heterozygosity in X-linked cone photo pigment expression common among females.


2004 ◽  
Vol 21 (3) ◽  
pp. 445-448 ◽  
Author(s):  
DAVID BIMLER ◽  
JOHN KIRKLAND

Tobacco smoke contains a range of toxins including carbon monoxide and cyanide. With specialized cells and high metabolic demands, the optic nerve and retina are vulnerable to toxic exposure. We examined the possible effects of smoking on color vision: specifically, whether smokers perceive a different pattern of suprathreshold color dissimilarities from nonsmokers. It is already known that smokers differ in threshold color discrimination, with elevated scores on the Roth 28-Hue Desaturated panel test. Groups of smokers and nonsmokers, matched for sex and age, followed a triadic procedure to compare dissimilarities among 32 pigmented stimuli (the caps of the saturated and desaturated versions of the D15 panel test). Multidimensional scaling was applied to quantify individual variations in the salience of the axes of color space. Despite the briefness, simplicity, and “low-tech” nature of the procedure, subtle but statistically significant differences did emerge: on average the smoking group were significantly less sensitive to red–green differences. This is consistent with some form of injury to the optic nerve.


1998 ◽  
Vol 46 (6) ◽  
pp. 697-702 ◽  
Author(s):  
Song-Kun Shyue ◽  
Stéphane Boissinot ◽  
Horacio Schneider ◽  
Iracilda Sampaio ◽  
Maria Paula Schneider ◽  
...  

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 85 ◽  
Author(s):  
Thiago Monteiro de Paiva Fernandes ◽  
Natanael Antonio dos Santos

Background: Cigarette smoke is probably the most significant source of exposure to toxic chemicals for humans, involving health-damaging components, such as nicotine, hydrogen cyanide and formaldehyde. The aim of the present study was to assess the influence of chronic heavy smoking on color discrimination (CD). Methods: All subjects were free of any neuropsychiatric disorder, identifiable ocular disease and had normal acuity. No abnormalities were detected in the fundoscopic examination and in the optical coherence tomography exam. We assessed color vision for healthy heavy smokers (n = 15; age range, 20-45 years), deprived smokers (n = 15, age range 20-45 years) and healthy non-smokers (n = 15; age range, 20-45 years), using the psychophysical forced-choice method. All groups were matched for gender and education level. In this paradigm, the volunteers had to choose the pseudoisochromatic stimulus containing a test frequency at four directions (e.g., up, down, right and left) in the subtest of Cambridge Colour Test (CCT): Trivector. Results: Performance on CCT differed between groups, and the observed pattern was that smokers had lower discrimination compared to non-smokers. In addition, deprived smokers presented lower discrimination to smokers and non-smokers. Contrary to expectation, the largest differences were observed for medium and long wavelengths. Conclusions: These results suggests that cigarette smoke and chronic exposure to nicotine, or withdrawal from nicotine, affects CD. This highlights the importance of understanding the diffuse effects of nicotine either attentional bias on color vision.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 85 ◽  
Author(s):  
Thiago Monteiro de Paiva Fernandes ◽  
Natalia Leandro Almeida ◽  
Natanael Antonio dos Santos

Background: Cigarette smoke is probably the most significant source of exposure to toxic chemicals for humans, involving health-damaging components, such as nicotine, hydrogen cyanide and formaldehyde. The aim of the present study was to assess the influence of chronic heavy smoking on color discrimination (CD). Methods: All subjects were free of any neuropsychiatric disorder, identifiable ocular disease and had normal acuity. No abnormalities were detected in the fundoscopic examination and in the optical coherence tomography exam. We assessed color vision for healthy heavy smokers (n = 15; age range, 20-45 years), deprived smokers (n = 15, age range 20-45 years) and healthy non-smokers (n = 15; age range, 20-45 years), using the psychophysical forced-choice method. All groups were matched for gender and education level. In this paradigm, the volunteers had to choose the pseudoisochromatic stimulus containing a test frequency at four directions (e.g., up, down, right and left) in the subtest of Cambridge Colour Test (CCT): Trivector. Results: Performance on CCT differed between groups, and the observed pattern was that smokers had lower discrimination compared to non-smokers. In addition, deprived smokers presented lower discrimination to smokers and non-smokers. Contrary to expectation, the largest differences were observed for medium and long wavelengths. Conclusions: These results suggests that cigarette smoke and chronic exposure to nicotine, or withdrawal from nicotine, affects CD. This highlights the importance of understanding the diffuse effects of nicotine either attentional bias on color vision.


Sign in / Sign up

Export Citation Format

Share Document