scholarly journals Tetherin is an exosomal tether

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
James R Edgar ◽  
Paul T Manna ◽  
Shinichi Nishimura ◽  
George Banting ◽  
Margaret S Robinson

Exosomes are extracellular vesicles that are released when endosomes fuse with the plasma membrane. They have been implicated in various functions in both health and disease, including intercellular communication, antigen presentation, prion transmission, and tumour cell metastasis. Here we show that inactivating the vacuolar ATPase in HeLa cells causes a dramatic increase in the production of exosomes, which display endocytosed tracers, cholesterol, and CD63. The exosomes remain clustered on the cell surface, similar to retroviruses, which are attached to the plasma membrane by tetherin. To determine whether tetherin also attaches exosomes, we knocked it out and found a 4-fold reduction in plasma membrane-associated exosomes, with a concomitant increase in exosomes discharged into the medium. This phenotype could be rescued by wild-type tetherin but not tetherin lacking its GPI anchor. We propose that tetherin may play a key role in exosome fate, determining whether they participate in long-range or short-range interactions.

Blood ◽  
2007 ◽  
Vol 109 (10) ◽  
pp. 4503-4510 ◽  
Author(s):  
Laura Silvestri ◽  
Alessia Pagani ◽  
Claudia Fazi ◽  
Gianmario Gerardi ◽  
Sonia Levi ◽  
...  

Abstract Hemojuvelin (HJV) positively modulates the iron regulator hepcidin, and its mutations are the major cause of juvenile hemochromatosis (JH), a recessive disease leading to iron overload. Defective HJV reduces hepcidin up-regulation both in humans and in Hjv-deficient mice. To investigate the JH pathogenesis and the functional properties of human HJV we studied the biosynthesis and maturation of 6 HJV pathogenic mutants in HeLa and HepG2 cells. We show that proteolytic processing is defective in mutants F170S, W191C, and G320V, but not in G99V and C119F. Moreover, we show that mutants G99V and C119F are targeted to the cell surface, while F170S, W191C, G320V, and R326X (lacking the glycosilphosphatidylinositol [GPI] anchor) are mainly retained in the endoplasmic reticulum, although all mutants are released as soluble forms (s-HJV) in a proportion that is modulated by iron supplementation. Membrane HJV (m-HJV) is mainly composed of the cleaved protein, and its level is increased by iron in wild-type (WT) mice but not in the mutants. Altogether, the data demonstrate that the loss of HJV membrane export is central to the pathogenesis of JH, and that HJV cleavage is essential for the export. The results support a dual function for s- and m-HJV in iron deficiency and overload, respectively.


2009 ◽  
Vol 418 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Audrey Parent ◽  
Emilie Hamelin ◽  
Pascale Germain ◽  
Jean-Luc Parent

The β2ARs (β2-adrenergic receptors) undergo ligand-induced internalization into early endosomes, but then are rapidly and efficiently recycled back to the plasma membrane, restoring the numbers of functional cell-surface receptors. Gathering evidence suggests that, during prolonged exposure to agonist, some β2ARs also utilize a slow recycling pathway through the perinuclear recycling endosomal compartment regulated by the small GTPase Rab11. In the present study, we demonstrate by co-immunoprecipitation studies that there is a β2AR–Rab11 association in HEK-293 cells (human embryonic kidney cells). We show using purified His6-tagged Rab11 protein and β2AR intracellular domains fused to GST (glutathione transferase) that Rab11 interacts directly with the C-terminal tail of β2AR, but not with the other intracellular domains of the receptor. Pull-down and immunoprecipitation assays revealed that the β2AR interacts preferentially with the GDP-bound form of Rab11. Arg333 and Lys348 in the C-terminal tail of the β2AR were identified as crucial determinants for Rab11 binding. A β2AR construct with these two residues mutated to alanine, β2AR RK/AA (R333A/K348A), was generated. Analysis of cell-surface receptors by ELISA revealed that the recycling of β2AR RK/AA was drastically reduced when compared with wild-type β2AR after agonist washout, following prolonged receptor stimulation. Confocal microscopy demonstrated that the β2AR RK/AA mutant failed to co-localize with Rab11 and recycle to the plasma membrane, in contrast with the wild-type receptor. To our knowledge, the present study is the first report of a direct interaction between the β2AR and a Rab GTPase, which is required for the accurate intracellular trafficking of the receptor.


2020 ◽  
Author(s):  
Hui Huang ◽  
Laura M. Chamness ◽  
Carlos G. Vanoye ◽  
Georg Kuenze ◽  
Jens Meiler ◽  
...  

ABSTRACTGain-of-function (GOF) mutations in the KCNQ1 voltage-gated potassium channel can induce cardiac arrhythmia. We tested whether any of the known GOF disease mutations in KCNQ1 act by increasing the amount of KCNQ1 that reaches the cell surface—“super-trafficking”. We found that levels of R231C KCNQ1 in the plasma membrane are 5-fold higher than wild type KCNQ1. This arises from both enhanced translocon-mediated membrane integration of the S4 voltage-sensor helix and an energetic linkage of C231 with the V129 and F166 side chains. Whole-cell electrophysiology recordings confirmed that R231C KCNQ1 in complex with KCNE1 is constitutively active, but also revealed the single channel activity of this mutant to be only 20% that of WT. The GOF phenotype associated with R231C therefore reflects the net effects of super-trafficking, reduced single channel activity, and constitutive channel activation. These investigations document membrane protein super-trafficking as a contributing mechanism to human disease.


2021 ◽  
pp. 2100267
Author(s):  
Jennifer A. Dickens ◽  
Eimear N. Rutherford ◽  
Susana Abreu ◽  
Joseph E. Chambers ◽  
Matthew O. Ellis ◽  
...  

Alveolar epithelial cell dysfunction plays an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) but remains incompletely understood. Some monogenic forms of pulmonary fibrosis are associated with expression of mutant surfactant protein C (SFTPC). The commonest pathogenic mutant, I73T, mislocalises to the alveolar epithelial cell plasma membrane and displays a toxic-gain-of-function. Because the mechanisms explaining the link between this mutant and IPF are incompletely understood, we sought to interrogate SFTPC trafficking in health and disease to understand the functional significance of SFTPC-I73T relocalisation.We performed mechanistic analysis of SFTPC trafficking in a cell model that reproduces the in vivo phenotype and validated findings in human primary alveolar organoids.We show that wild-type SFTPC takes an unexpected indirect trafficking route via the plasma membrane and undergoes the first of multiple cleavage events before reaching the multivesicular body (MVB) for further processing. SFTPC-I73T takes this same route, but its progress is retarded both at the cell surface and due to failure of trafficking into the MVB. Unable to undergo onward trafficking, it is recycled to the plasma membrane as a partially cleaved intermediate.These data show for the first time that all SFTPC transits the cell surface during normal trafficking, and the I73T mutation accumulates at the cell surface through both retarded trafficking and active recycling. This understanding of normal SFTPC trafficking and how the I73T mutant disturbs it provides novel insight into SFTPC biology in health and disease, and in the contribution of the SFTPC mutant to IPF development.


2001 ◽  
Vol 153 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Lúcia S. Borges ◽  
Michael Ferns

At the developing neuromuscular junction, a motoneuron-derived factor called agrin signals through the muscle-specific kinase receptor to induce postsynaptic aggregation of the acetylcholine receptor (AChR). The agrin signaling pathway involves tyrosine phosphorylation of the AChR β subunit, and we have tested its role in receptor localization by expressing tagged, tyrosine-minus forms of the β subunit in mouse Sol8 myotubes. We find that agrin-induced phosphorylation of the β subunit occurs only on cell surface AChR, and that AChR-containing tyrosine-minus β subunit is targeted normally to the plasma membrane. Surface AChR that is tyrosine phosphorylated is less detergent extractable than nonphosphorylated AChR, indicating that it is preferentially linked to the cytoskeleton. Consistent with this, we find that agrin treatment reduces the detergent extractability of AChR that contains tagged wild-type β subunit but not tyrosine-minus β subunit. In addition, agrin-induced clustering of AChR containing tyrosine-minus β subunit is reduced in comparison to wild-type receptor. Thus, we find that agrin-induced phosphorylation of AChR β subunit regulates cytoskeletal anchoring and contributes to the clustering of the AChR, and this is likely to play an important role in the postsynaptic localization of the receptor at the developing synapse.


1996 ◽  
Vol 7 (11) ◽  
pp. 1667-1677 ◽  
Author(s):  
K Redding ◽  
M Seeger ◽  
G S Payne ◽  
R S Fuller

Localization of Kex2 protease (Kex2p) to the yeast trans-Golgi network (TGN) requires a TGN localization signal (TLS) in the Kex2p C-terminal cytosolic tail. Mutation of the TLS accelerates transport of Kex2p to the vacuole by an intracellular (SEC1-independent) pathway. In contrast, inactivation of the clathrin heavy-chain gene CHC1 results in transport of Kex2p and other Golgi membrane proteins to the cell surface. Here, the relationship of the two localization defects was assessed by examining the effects of a temperature-sensitive CHC1 allele on trafficking of wild-type (WT) and TLS mutant forms of Kex2p. Inactivation of clathrin by shifting chc1-ts cells to 37 degrees C caused WT and TLS mutant forms of Kex2p to behave identically. All forms of Kex2p appeared at the plasma membrane within 30-60 min of the temperature shift. TLS mutant forms of Kex2p were stabilized, their half-lives increasing to that of wild-type Kex2p. After inactivation of clathrin heavy chain, vacuolar protease-dependent degradation of all forms of Kex2p was blocked by a sec1 mutation, which is required for secretory vesicle fusion to the plasma membrane, indicating that transport to the cell surface was required for degradation by vacuolar proteolysis. Finally, after clathrin inactivation, all forms of Kex2p were degraded in part by a vacuolar protease-independent pathway. After inactivation of both chc1-ts and sec1-ts, Kex2 was degraded exclusively by this pathway. We conclude that the effects of clathrin inactivation on Kex2p localization are independent of the Kex2p C-terminal cytosolic tail. Although these results neither prove nor rule out a direct interaction between the Kex2 TLS and a clathrin-dependent structure, they do imply that clathrin is required for the intracellular transport of Kex2p TLS mutants to the vacuole.


2001 ◽  
Vol 280 (1) ◽  
pp. C166-C174 ◽  
Author(s):  
Ghanshyam D. Heda ◽  
Mridul Tanwani ◽  
Christopher R. Marino

Although the biosynthetic arrest of the ΔF508 mutant of cystic fibrosis transmembrane conductance regulator (CFTR) can be partially reversed by physical and chemical means, recent evidence suggests that the functional stability of the mutant protein after reaching the cell surface is compromised. To understand the molecular basis for this observation, the current study directly measured the half-life of ΔF508 and wild-type CFTR at the cell surface of transfected LLC-PK1 cells. Plasma membrane CFTR expression over time was characterized biochemically and functionally in these polarized epithelial cells. Surface biotinylation, streptavidin extraction, and quantitative immunoblot analysis determined the biochemical half-life of plasma membrane ΔF508 CFTR to be ∼4 h, whereas the plasma membrane half-life of wild-type CFTR exceeded 48 h. This difference in biochemical stability correlated with CFTR-mediated transport function. These findings indicate that the ΔF508 mutation decreases the biochemical stability of CFTR at the cell surface. We conclude that the ΔF508 mutation triggers more rapid internalization of CFTR and/or its preferential sorting to a pathway of rapid degradation.


1997 ◽  
Vol 17 (11) ◽  
pp. 6236-6245 ◽  
Author(s):  
D D Jenness ◽  
Y Li ◽  
C Tipper ◽  
P Spatrick

This report compares trafficking routes of a plasma membrane protein that was misfolded either during its synthesis or after it had reached the cell surface. A temperature-sensitive mutant form of the yeast alpha-factor pheromone receptor (ste2-3) was found to provide a model substrate for quality control of plasma membrane proteins. We show for the first time that a misfolded membrane protein is recognized at the cell surface and rapidly removed. When the ste2-3 mutant cells were cultured continuously at 34 degrees C, the mutant receptor protein (Ste2-3p) failed to accumulate at the plasma membrane and was degraded with a half-life of 4 min, compared with a half-life of 33 min for wild-type receptor protein (Ste2p). Degradation of both Ste2-3p and Ste2p required the vacuolar proteolytic activities controlled by the PEP4 gene. At 34 degrees C, Ste2-3p comigrated with glycosylated Ste2p on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that Ste2-3p enters the secretory pathway. Degradation of Ste2-3p did not require delivery to the plasma membrane as the sec1 mutation failed to block rapid turnover. Truncation of the C-terminal cytoplasmic domain of the mutant receptors did not permit accumulation at the plasma membrane; thus, the endocytic signals contained in this domain are unnecessary for intracellular retention. In the pep4 mutant, Ste2-3p accumulated as series of high-molecular-weight species, suggesting a potential role for ubiquitin in the elimination process. When ste2-3 mutant cells were cultured continuously at 22 degrees C, Ste2-3p accumulated in the plasma membrane. When the 22 degrees C culture was shifted to 34 degrees C, Ste2-3p was removed from the plasma membrane and degraded by a PEP4-dependent mechanism with a 24-min half-life; the wild-type Ste2p displayed a 72-min half-life. Thus, structural defects in Ste2-3p synthesized at 34 degrees C are recognized in transit to the plasma membrane, leading to rapid degradation, and Ste2-3p that is preassembled at the plasma membrane is also removed and degraded following a shift to 34 degrees C.


1996 ◽  
Vol 133 (2) ◽  
pp. 247-256 ◽  
Author(s):  
T Yoshimori ◽  
P Keller ◽  
M G Roth ◽  
K Simons

The question of how membrane proteins are delivered from the TGN to the cell surface in fibroblasts has received little attention. In this paper we have studied how their post-Golgi delivery routes compare with those in epithelia] cells. We have analyzed the transport of the vesicular stomatitis virus G protein, the Semliki Forest virus spike glycoprotein, both basolateral in MDCK cells, and the influenza virus hemagglutinin, apical in MDCK cells. In addition, we also have studied the transport of a hemagglutinin mutant (Cys543Tyr) which is basolateral in MDCK cells. Aluminum fluoride, a general activator of heterotrimeric G proteins, inhibited the transport of the basolateral cognate proteins, as well as of the hemagglutinin mutant, from the TGN to the cell surface in BHK and CHO cells, while having no effect on the surface delivery of the wild-type hemagglutinin. Only wild-type hemagglutinin became insoluble in the detergent CHAPS during transport through the BHK and CHO Golgi complexes, whereas the basolateral marker proteins remained CHAPS-soluble. We also have developed an in vitro assay using streptolysin O-permeabilized BHK cells, similar to the one we have previously used for analyzing polarized transport in MDCK cells (Pimplikar, S.W., E. Ikonen, and K. Simons. 1994. J. Cell Biol. 125:1025-1035). In this assay anti-NSF and rab-GDI inhibited transport of Semliki Forest virus spike glycoproteins from the TGN to the cell surface while having little effect on transport of the hemagglutinin. Altogether these data suggest that fibroblasts have apical and basolateral cognate routes from the TGN to the plasma membrane.


2003 ◽  
Vol 284 (5) ◽  
pp. C1319-C1329 ◽  
Author(s):  
Dirk Roosterman ◽  
Fabien Schmidlin ◽  
Nigel W. Bunnett

We evaluated the contribution of rab5a and rab11a to trafficking and signaling of protease-activated receptor 2 (PAR2), a receptor for trypsin and tryptase. Agonists stimulated internalization of PAR2 into early endosomes containing rab5a. Dominant negative rab5aS34N disrupted early endosomes and inhibited agonist-stimulated endocytosis of PAR2. Internalized PAR2 was sorted to lysosomes, and rab5a remained in early endosomes. Rab5a promoted and rab5aS34N impeded resensitization of trypsin-induced calcium mobilization. Rab11a was detected in the Golgi apparatus with PAR2, and PAR2 agonists stimulated redistribution of rab11a into vesicles containing PAR2 that migrated to the cell surface. Dominant negative rab11aS25N was mostly confined to the Golgi apparatus. Although expression of rab11aS25N caused retention of PAR2 in the Golgi apparatus, it did not abolish trafficking of PAR2 to the cell surface. However, expression of wild-type rab11a accelerated both recovery of PAR2 at the cell surface and resensitization of PAR2 signaling. Thus rab5a is required for PAR2 endocytosis and resensitization, whereas rab11a contributes to trafficking of PAR2 from the Golgi apparatus to the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document