scholarly journals Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Dongsheng Xiao ◽  
Matthieu P Vanni ◽  
Catalin C Mitelut ◽  
Allen W Chan ◽  
Jeffrey M LeDue ◽  
...  

Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

2018 ◽  
Author(s):  
Elena Montagni ◽  
Francesco Resta ◽  
Emilia Conti ◽  
Alessandro Scaglione ◽  
Maria Pasquini ◽  
...  

AbstractIntracellular concentration of free calcium ions in neuronal populations can be longitudinally evaluated by using fluorescent protein indicators, called genetically encoded calcium indicators (GECIs). GECIs with long emission wavelengths are particularly attractive for deep tissue microscopy in vivo, and have the additional advantage of avoiding spectral overlap with commonly used neuronal actuators like Channelrhodopsin.Here we investigated the performances of selected red-shifted GECIs through an ex vivo characterization and in vivo imaging of cortical mouse activity during motor task execution. Cortical neurons were infected with adeno-associated virus (AAV) expressing one of the red GECI variants (jRCaMP1a, jRCaMP1b, jRGECO1a, jRGECO1b). First we characterized the transfection in terms of extension and intensity using wide-field fluorescence microscopy. Next, we used RCaMP1a to analyse the cortical neuronal activity during motor behaviour. To that end, wide-field fluorescent microscopy and a robotic device for motor control were combined for simultaneous recording of cortical neuronal-activity, force applied and forelimb position during task execution.Our results show that jRCaMP1a has sufficient sensitivity to monitor in vivo neuronal activity over multiple functional areas, and can be successfully used to perform longitudinal imaging in awake mice.


2021 ◽  
Author(s):  
William F Tobin ◽  
Matthew Weston

Genetic epilepsies are often caused by variants in widely expressed genes, potentially impacting numerous brain regions and functions. For instance, gain-of-function (GOF) variants in the widely expressed Na+-activated K+ channel gene KCNT1 alter basic neurophysiological and synaptic properties of cortical neurons, leading to developmental epileptic encephalopathy. Yet, aside from causing seizures, little is known about how such variants reshape interictal brain activity, and how this relates to epileptic activity and other disease symptoms. To address this knowledge gap, we monitored neural activity across the dorsal cortex in a mouse model of human KCNT1-related epilepsy using in vivo, awake widefield Ca2+ imaging. We observed 52 spontaneous seizures and 1700 interictal epileptiform discharges (IEDs) in homozygous mutant (Kcnt1m/m) mice, allowing us to map their appearance and spread at high spatial resolution. Outside of seizures and IEDs, we detected ~46,000 events, representing interictal cortical activity, in both Kcnt1m/m and wild-type (WT) mice, and we classified them according to their spatial profiles. Spontaneous seizures and IEDs emerged within a consistent set of susceptible cortical areas, and seizures propagated both contiguously and non-contiguously within these areas in a manner influenced, but not fully determined, by underlying synaptic connectivity. Seizure emergence was predicted by a progressive concentration of total cortical activity within the impending seizure emergence zone. Outside of seizures and IEDs, similar events were detected in WT and Kcnt1m/m mice, suggesting that the spatial structure of interictal activity was largely preserved. Several features of these events, however, were altered in Kcnt1m/m mice. Most event types were briefer, and their intensity more variable, across Kcnt1m/m mice; mice showing more intense activity spent more time in seizure. Furthermore, the rate of events whose spatial profile overlapped with where seizures and IEDs emerged was increased in Kcnt1m/m mice. Taken together, these results demonstrate that an epilepsy-causing K+ channel variant broadly alters physiology. Yet, outside of seizures and IEDs, it acts not to produce novel types of cortical activity, but rather to modulate its amount. The areas where seizures and IEDs emerge show excessively frequent and intense interictal activity and the mean intensity of an individual's cortical activity predicts its seizure burden. These findings provide critical guidance for targeting future research and therapy development.


2017 ◽  
Author(s):  
Bryan M. Krause ◽  
Caitlin A. Murphy ◽  
Daniel J. Uhlrich ◽  
Matthew I. Banks

AbstractSpatio-temporal cortical activity patterns relative to both peripheral input and local network activity carry information about stimulus identity and context. GABAergic interneurons are reported to regulate spiking at millisecond precision in response to sensory stimulation and during gamma oscillations; their role in regulating spike timing during induced network bursts is unclear. We investigated this issue in murine auditory thalamo-cortical (TC) brain slices, in which TC afferents induced network bursts similar to previous reports in vivo. Spike timing relative to TC afferent stimulation during bursts was poor in pyramidal cells and SOM+ interneurons. It was more precise in PV+ interneurons, consistent with their reported contribution to spiking precision in pyramidal cells. Optogenetic suppression of PV+ cells unexpectedly improved afferent-locked spike timing in pyramidal cells. In contrast, our evidence suggests that PV+ cells do regulate the spatio-temporal spike pattern of pyramidal cells during network bursts, whose organization is suited to ensemble coding of stimulus information. Simulations showed that suppressing PV+ cells reduces the capacity of pyramidal cell networks to produce discriminable spike patterns. By dissociating temporal precision with respect to a stimulus versus internal cortical activity, we identified a novel role for GABAergic cells in regulating information processing in cortical networks.


2020 ◽  
Vol 3 (1) ◽  
pp. 14 ◽  
Author(s):  
Marco Celotto ◽  
Chiara De Luca ◽  
Paolo Muratore ◽  
Francesco Resta ◽  
Anna Letizia Allegra Mascaro ◽  
...  

Slow waves (SWs) are spatio-temporal patterns of cortical activity that occur both during natural sleep and anesthesia and are preserved across species. Even though electrophysiological recordings have been largely used to characterize brain states, they are limited in the spatial resolution and cannot target specific neuronal population. Recently, large-scale optical imaging techniques coupled with functional indicators overcame these restrictions, and new pipelines of analysis and novel approaches of SWs modelling are needed to extract relevant features of the spatio-temporal dynamics of SWs from these highly spatially resolved data-sets. Here we combined wide-field fluorescence microscopy and a transgenic mouse model expressing a calcium indicator (GCaMP6f) in excitatory neurons to study SW propagation over the meso-scale under ketamine anesthesia. We developed a versatile analysis pipeline to identify and quantify the spatio-temporal propagation of the SWs. Moreover, we designed a computational simulator based on a simple theoretical model, which takes into account the statistics of neuronal activity, the response of fluorescence proteins and the slow waves dynamics. The simulator was capable of synthesizing artificial signals that could reliably reproduce several features of the SWs observed in vivo, thus enabling a calibration tool for the analysis pipeline. Comparison of experimental and simulated data shows the robustness of the analysis tools and its potential to uncover mechanistic insights of the Slow Wave Activity (SWA).


2017 ◽  
Vol 118 (4) ◽  
pp. 2142-2155 ◽  
Author(s):  
Nathaniel C. Wright ◽  
Ralf Wessel

A primary goal of systems neuroscience is to understand cortical function, typically by studying spontaneous and stimulus-modulated cortical activity. Mounting evidence suggests a strong and complex relationship exists between the ongoing and stimulus-modulated cortical state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope: it records the activity of a minority of neurons and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but stable recordings are difficult to obtain in vivo. Here, we recorded subthreshold cortical visual responses in the ex vivo turtle eye-attached whole brain preparation, which is ideally suited for such a study. We found that, in the absence of visual stimulation, the network was “synchronous”; neurons displayed network-mediated transitions between hyperpolarized (Down) and depolarized (Up) membrane potential states. The prevalence of these slow-wave transitions varied across turtles and recording sessions. Visual stimulation evoked similar Up states, which were on average larger and less reliable when the ongoing state was more synchronous. Responses were muted when immediately preceded by large, spontaneous Up states. Evoked spiking was sparse, highly variable across trials, and mediated by concerted synaptic inputs that were, in general, only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons. NEW & NOTEWORTHY Most studies of cortical activity focus on spikes. Subthreshold membrane potential recordings can provide complementary insight, but stable recordings are difficult to obtain in vivo. Here, we recorded the membrane potentials of cortical neurons during ongoing and visually evoked activity. We observed a strong relationship between network and single-neuron evoked activity spanning multiple temporal scales. The membrane potential perspective of cortical dynamics thus highlights the influence of intrinsic network properties on visual processing.


2004 ◽  
Vol 92 (5) ◽  
pp. 2762-2770 ◽  
Author(s):  
James T. Porter ◽  
Dalila Nieves

Cortical inhibition plays an important role in the processing of sensory information, and the enlargement of receptive fields by the in vivo application of GABAB receptor antagonists indicates that GABAB receptors mediate some of this cortical inhibition. Although there is evidence of postsynaptic GABAB receptors on cortical neurons, there is no evidence of GABAB receptors on thalamocortical terminals. Therefore to determine if presynaptic GABAB receptors modulate the thalamic excitation of layer IV inhibitory neurons and excitatory neurons in layers II–III and IV of the somatosensory “barrel” cortex of mice, we used a thalamocortical slice preparation and patch-clamp electrophysiology. Stimulation of the ventrobasal thalamus elicited excitatory postsynaptic currents (EPSCs) in cortical neurons. Bath application of baclofen, a selective GABAB receptor agonist, reversibly decreased AMPA receptor-mediated and N-methyl-d-aspartate (NMDA) receptor-mediated EPSCs in inhibitory and excitatory neurons. The GABAB receptor antagonist, CGP 35348, reversed the inhibition produced by baclofen. Blocking the postsynaptic GABAB receptor-mediated effects with a Cs+-based recording solution did not affect the inhibition, suggesting a presynaptic effect of baclofen. Baclofen reversibly increased the paired-pulse ratio and the coefficient of variation, consistent with the presynaptic inhibition of glutamate release. Our results indicate that the presynaptic activation of GABAB receptors modulates thalamocortical excitation of inhibitory and excitatory neurons and provide another mechanism by which cortical inhibition can modulate the processing of sensory information.


2021 ◽  
Author(s):  
Annunziato Morabito ◽  
Yann Zerlaut ◽  
Benjamin Serraz ◽  
Romain Sala ◽  
Pierre Paoletti ◽  
...  

Activation of NMDA receptors (NMDARs) has been proposed to be a key component of single neuron computations in vivo. However is unknown if specific mechanisms control the function of such receptors and modulate input-output transformations performed by cortical neurons under in vivo-like conditions. Here we found that in layer 2/3 pyramidal neurons (L2/3 PNs), repeated synaptic stimulation results in an activity-dependent decrease in NMDARs activity by vesicular zinc. Such a mechanism shifted the threshold for dendritic non-linearities and strongly reduced LTP induction. Modulation of NMDARs was cell- and pathway-specific, being present selectively in L2/3-L2/3 connections but absent in ascending bottom-up inputs originating from L4 neurons. Numerical simulations highlighted that activity-dependent modulation of NMDARs has an important influence in dendritic computations endowing L2/3 PN dendrites with the ability to sustain dendritic non-linear integrations constant across different regimes of synaptic activity like those found in vivo. The present results therefore provide a new perspective on the action of vesicular zinc in cortical circuits by highlighting the role of this endogenous ion in normalizing dendritic integration of PNs during a constantly changing synaptic input pattern.


2020 ◽  
Author(s):  
Ashwini G. Naik ◽  
Robert V. Kenyon ◽  
Aynaz Taheri ◽  
Tanya Berger-Wolf ◽  
Baher Ibrahim ◽  
...  

AbstractBackgroundUnderstanding functional correlations between the activities of neuron populations is vital for the analysis of neuronal networks. Analyzing large-scale neuroimaging data obtained from hundreds of neurons simultaneously poses significant visualization challenges. We developed V-NeuroStack, a novel network visualization tool to visualize data obtained using calcium imaging of spontaneous activity of cortical neurons in a mouse brain slice.New MethodV-NeuroStack creates 3D time stacks by stacking 2D time frames for a period of 600 seconds. It provides a web interface that enables exploration and analysis of data using a combination of 3D and 2D visualization techniques.Comparison with existing MethodsPrevious attempts to analyze such data have been limited by the tools available to visualize large numbers of correlated activity traces. V-NeuroStack can scale data sets with at least a few thousand temporal snapshots.ResultsV-NeuroStack’s 3D view is used to explore patterns in the dynamic large-scale correlations between neurons over time. The 2D view is used to examine any timestep of interest in greater detail. Furthermore, a dual-line graph provides the ability to explore the raw and first-derivative values of a single neuron or a functional cluster of neurons.ConclusionsV-NeuroStack enables easy exploration and analysis of large spatio-temporal datasets using two visualization paradigms: (a) Space-Time cube (b)Two-dimensional networks, via web interface. It will support future advancements in in vitro and in vivo data capturing techniques and can bring forth novel hypotheses by permitting unambiguous visualization of large-scale patterns in the neuronal activity data.


1977 ◽  
Vol 16 (2) ◽  
pp. 220-222
Author(s):  
Zeba A. Sathar

The book covers a wide field, touching on almost all aspects of popula¬tion change on a world-wide scale. It discusses, using world and country data, the relationships between demographic and socio-economic variables, and elaborates on" their relative importance in the determination of population problems which confront the world as a whole and nations individually. Policies designed to alleviate these problems are discussed with an emphasis on those related to population control. The first chapter is entitled "Population Growth: Past and Prospective" and reviews the various parameters associated with population change in the past and in the future. It touches upon the concept of a stable population in order to show the elements which cause a population to change (i.e. remove it from its stable condition). The main elements of change, population growth, migration, mortality and natality are discussed individually. The chapter is concluded by a description of the main differences in these elements and other socio-economic conditions as they exist in the less-developed and developed countries.


Sign in / Sign up

Export Citation Format

Share Document