scholarly journals Author response: Transient protein-protein interactions perturb E. coli metabolome and cause gene dosage toxicity

2016 ◽  
Author(s):  
Sanchari Bhattacharyya ◽  
Shimon Bershtein ◽  
Jin Yan ◽  
Tijda Argun ◽  
Amy I Gilson ◽  
...  
2016 ◽  
Author(s):  
Sanchari Bhattacharyya ◽  
Shimon Bershtein ◽  
Jin Yan ◽  
Tijda Argun ◽  
Amy I. Gilson ◽  
...  

Several genes exhibit gene dosage toxicity yet its molecular underpinnings remain unknown. Here we demonstrate that overexpression of DHFR in E. coli causes toxic metabolic imbalance triggered by interactions with several enzymes involved in 1-carbon metabolism, in particular GlyA and PurH. DHFR overexpression partially inhibits activity of these enzymes, but at physiological concentrations, PurH-DHFR interaction enhances catalytic efficiency of DHFR, implying a functional interaction in vivo. Surprisingly, overexpression of orthologous DHFRs from other bacterial species caused minimal metabolic and fitness perturbations, despite pulling out more interacting partners than overexpressed endogenous DHFR. Orthologous DHFRs were less potent in inhibiting E. coli GlyA and PurH, or gaining a catalytic improvement upon interaction with PurH, indicating a partial loss of interaction specificity due to evolutionary divergence. This study shows how protein overexpression perturbs a dynamic network of weak yet potentially functional PPI with consequences for the metabolic state of cells and their fitness.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Sanchari Bhattacharyya ◽  
Shimon Bershtein ◽  
Jin Yan ◽  
Tijda Argun ◽  
Amy I Gilson ◽  
...  

Gene dosage toxicity (GDT) is an important factor that determines optimal levels of protein abundances, yet its molecular underpinnings remain unknown. Here, we demonstrate that overexpression of DHFR in E. coli causes a toxic metabolic imbalance triggered by interactions with several functionally related enzymes. Though deleterious in the overexpression regime, surprisingly, these interactions are beneficial at physiological concentrations, implying their functional significance in vivo. Moreover, we found that overexpression of orthologous DHFR proteins had minimal effect on all levels of cellular organization – molecular, systems, and phenotypic, in sharp contrast to E. coli DHFR. Dramatic difference of GDT between ‘E. coli’s self’ and ‘foreign’ proteins suggests the crucial role of evolutionary selection in shaping protein-protein interaction (PPI) networks at the whole proteome level. This study shows how protein overexpression perturbs a dynamic metabolon of weak yet potentially functional PPI, with consequences for the metabolic state of cells and their fitness.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea Bogutzki ◽  
Natalie Naue ◽  
Lidia Litz ◽  
Andreas Pich ◽  
Ute Curth

Abstract During DNA replication in E. coli, a switch between DnaG primase and DNA polymerase III holoenzyme (pol III) activities has to occur every time when the synthesis of a new Okazaki fragment starts. As both primase and the χ subunit of pol III interact with the highly conserved C-terminus of single-stranded DNA-binding protein (SSB), it had been proposed that the binding of both proteins to SSB is mutually exclusive. Using a replication system containing the origin of replication of the single-stranded DNA phage G4 (G4ori) saturated with SSB, we tested whether DnaG and pol III can bind concurrently to the primed template. We found that the addition of pol III does not lead to a displacement of primase, but to the formation of higher complexes. Even pol III-mediated primer elongation by one or several DNA nucleotides does not result in the dissociation of DnaG. About 10 nucleotides have to be added in order to displace one of the two primase molecules bound to SSB-saturated G4ori. The concurrent binding of primase and pol III is highly plausible, since even the SSB tetramer situated directly next to the 3′-terminus of the primer provides four C-termini for protein-protein interactions.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Shomeek Chowdhury ◽  
Stephen Hepper ◽  
Mudassir K. Lodi ◽  
Milton H. Saier ◽  
Peter Uetz

Glycolysis is regulated by numerous mechanisms including allosteric regulation, post-translational modification or protein-protein interactions (PPI). While glycolytic enzymes have been found to interact with hundreds of proteins, the impact of only some of these PPIs on glycolysis is well understood. Here we investigate which of these interactions may affect glycolysis in E. coli and possibly across numerous other bacteria, based on the stoichiometry of interacting protein pairs (from proteomic studies) and their conservation across bacteria. We present a list of 339 protein-protein interactions involving glycolytic enzymes but predict that ~70% of glycolytic interactors are not present in adequate amounts to have a significant impact on glycolysis. Finally, we identify a conserved but uncharacterized subset of interactions that are likely to affect glycolysis and deserve further study.


2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


2020 ◽  
Author(s):  
Kohki Kido ◽  
Satoshi Yamanaka ◽  
Shogo Nakano ◽  
Kou Motani ◽  
Souta Shinohara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document