scholarly journals Decision letter: A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages

2017 ◽  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Abigail J Morales ◽  
Javier A Carrero ◽  
Putzer J Hung ◽  
Anthony T Tubbs ◽  
Jared M Andrews ◽  
...  

Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1β and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR.


2014 ◽  
Vol 89 (5) ◽  
pp. 2628-2642 ◽  
Author(s):  
Ling Fang ◽  
Sanjeev Choudhary ◽  
Bing Tian ◽  
Istvan Boldogh ◽  
Chunying Yang ◽  
...  

ABSTRACTRespiratory syncytial virus (RSV) is a primary etiological agent of childhood lower respiratory tract disease. Molecular patterns induced by active infection trigger a coordinated retinoic acid-inducible gene I (RIG-I)-Toll-like receptor (TLR) signaling response to induce inflammatory cytokines and antiviral mucosal interferons. Recently, we discovered a nuclear oxidative stress-sensitive pathway mediated by the DNA damage response protein, ataxia telangiectasia mutated (ATM), in cytokine-induced NF-κB/RelA Ser 276 phosphorylation. Here we observe that ATM silencing results in enhanced single-strand RNA (ssRNA) replication of RSVand Sendai virus, due to decreased expression and secretion of type I and III interferons (IFNs), despite maintenance of IFN regulatory factor 3 (IRF3)-dependent IFN-stimulated genes (ISGs). In addition to enhanced oxidative stress, RSV replication enhances foci of phosphorylated histone 2AX variant (γH2AX), Ser 1981 phosphorylation of ATM, and IKKγ/NEMO-dependent ATM nuclear export, indicating activation of the DNA damage response. ATM-deficient cells show defective RSV-induced mitogen and stress-activated kinase 1 (MSK-1) Ser 376 phosphorylation and reduced RelA Ser 276 phosphorylation, whose formation is required for IRF7 expression. We observe that RelA inducibly binds the native IFN regulatory factor 7 (IRF7) promoter in an ATM-dependent manner, and IRF7 inducibly binds to the endogenous retinoic acid-inducible gene I (RIG-I) promoter. Ectopic IRF7 expression restores RIG-I expression and type I/III IFN expression in ATM-silenced cells. We conclude that paramyxoviruses trigger the DNA damage response, a pathway required for MSK1 activation of phospho Ser 276 RelA formation to trigger the IRF7-RIG-I amplification loop necessary for mucosal IFN production. These data provide the molecular pathogenesis for defects in the cellular innate immunity of patients with homozygous ATM mutations.IMPORTANCERNA virus infections trigger cellular response pathways to limit spread to adjacent tissues. This “innate immune response” is mediated by germ line-encoded pattern recognition receptors that trigger activation of two, largely independent, intracellular NF-κB and IRF3 transcription factors. Downstream, expression of protective antiviral interferons is amplified by positive-feedback loops mediated by inducible interferon regulatory factors (IRFs) and retinoic acid inducible gene (RIG-I). Our results indicate that a nuclear oxidative stress- and DNA damage-sensing factor, ATM, is required to mediate a cross talk pathway between NF-κB and IRF7 through mediating phosphorylation of NF-κB. Our studies provide further information about the defects in cellular and innate immunity in patients with inherited ATM mutations.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1166-1166
Author(s):  
Wu Zhang ◽  
Meng-Lei Ding ◽  
Xian-Yang Li ◽  
He-Zhou Guo ◽  
Hong-Xin Zhang ◽  
...  

Abstract Throughout life hematopoietic stem cells (HSCs) have to cope with various kinds of insults from inflammation to DNA damage constantly to maintain the integrity of stemness. It is possible that certain core factors are commonly implicated in the maintenance of HSC pool and function under discrete physiological and pathological conditions. However, the underlying mechanisms remain largely unexplored. Previous works have demonstrated that retinoic acid inducible gene I (Rig-I) plays an essential role in recognizing viral RNA and activating type I IFN transcription, but whether Rig-I is involved in the core program governing HSCs’ behaviors is unclear. Here, we report that in the steady status Rig-I deficiency significantly increased HSC number by dysregulating the cell-cycling status of HSCs in mice. However, HSCs in Rig-I-/- mice were actually more sensitive to genotoxic treatments such as irradiation as compared to wild type HSCs, causing more Rig-I-/- mice to die of hematopoietic exhaustion. In accordance, HSC transplantation assays showed a significant impact of Rig-I loss on the hematopoietic regeneration capacity. Mechanistically, we found that Rig-I represented a pivotal component of the molecular pathways that mediate DNA-damage response and the repair of DNA lesions. Taken together, these data indicate a crucial role of innate immunity-regulatory factor Rig-I in the maintenance of HSCs. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daipayan Banerjee ◽  
Kurt Langberg ◽  
Salar Abbas ◽  
Eric Odermatt ◽  
Praveen Yerramothu ◽  
...  

AbstractCyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Nikolaos I. Vlachogiannis ◽  
Maria Pappa ◽  
Panagiotis A. Ntouros ◽  
Adrianos Nezos ◽  
Clio P. Mavragani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document