scholarly journals Decision letter: Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners

2018 ◽  
Keyword(s):  
Neoplasma ◽  
2012 ◽  
Vol 59 (04) ◽  
pp. 440-449 ◽  
Author(s):  
L. ZAHRADOVA ◽  
K. MOLLOVA ◽  
D. OCADLIKOVA ◽  
L. KOVAROVA ◽  
Z. ADAM ◽  
...  

Author(s):  
Marie V. Wong ◽  
Paaventhan Palasingam ◽  
Prasanna R. Kolatkar

The ID proteins are named for their role as inhibitors of DNA binding and differentiation. They contain a helix–loop–helix (HLH) domain but lack a basic DNA-binding domain. In complex with basic HLH (bHLH) transcription factors, gene expression is regulated by DNA-binding inactivation. Although the HLH domain is highly conserved and shares a similar topology, the IDs preferentially bind class I bHLH-group members such as E47 (TCF3) but not the class III bHLH member Myc. A structure of an ID protein could potentially shed light on its mechanism. Owing to their short half-livesin vivoand reportedin vitroinstability, this paper describes the strategies that went into expressing sufficient soluble and stable ID2 to finally obtain diffraction-quality crystals. A 2.1 Å resolution data set was collected from a crystal belonging to space groupP3121 with unit-cell parametersa=b= 51.622,c= 111.474 Å, α = β = 90, γ = 120° that was obtained by hanging-drop vapour diffusion in a precipitant solution consisting of 0.1 MMES pH 6.5, 2.0 Mpotassium acetate. The solvent content was consistent with the presence of one or two molecules in the asymmetric unit.


Immunity ◽  
2017 ◽  
Vol 46 (5) ◽  
pp. 818-834.e4 ◽  
Author(s):  
Masaki Miyazaki ◽  
Kazuko Miyazaki ◽  
Kenian Chen ◽  
Yi Jin ◽  
Jacob Turner ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 749-749 ◽  
Author(s):  
Sattva S. Neelapu ◽  
Barry L. Gause ◽  
Linda Harvey ◽  
Andrea R. Frye ◽  
Jessie Horton ◽  
...  

Abstract The unique antigenic determinants (Idiotype [Id]) of the immunoglobulin expressed on a given B cell malignancy can serve as a tumor-specific antigen for active immunotherapy. We have previously demonstrated that Id vaccines in follicular lymphoma (FL) patients administered in the minimal residual disease (MRD) state are immunogenic and are associated with induction of complete molecular remissions and long-term disease-free survival (Nature Med 5:1171–1177, 1999). This hybridoma-derived vaccine is now being tested in a pivotal Phase III clinical trial. However, the production of Id protein by hybridoma technology for such vaccine formulation is an expensive and laborious process requiring an average of 3 to 6 months to manufacture the vaccine for each patient. To overcome this difficulty, we developed a novel vaccine formulation where we directly extracted the membrane proteins from lymph node biopsy-derived tumor cells and incorporated them into liposomes along with IL-2. Testing in preclinical studies showed this formulation to be as potent as our prototype hybridoma-derived Id protein vaccine. In the present study, 11 previously untreated and/or relapsed FL patients received 5 injections of this novel vaccine formulation subcutaneously and/or intratumorally at approximately monthly intervals. The vaccine was well tolerated and induced only minor local reactions at the sites of injection. T cell responses were evaluated by cytokine induction and IFNg ELISPOT against autologous tumor. Post-vaccine, but not pre-vaccine, peripheral blood mononuclear cells (PBMC) from 6 out of 10 patients that were assessed, recognized autologous tumor cells, as demonstrated by TNFa, GM-CSF and/or IFNg production. Significant production of cytokines was observed only in response to autologous tumor cells, but not normal B cells. The precursor frequency of tumor-reactive T cells was significantly increased in postvaccine PBMC (range 19–115 IFNg spots/100,000 PBMC), compared with prevaccine PBMC (range 2–7 IFNg spots/100,000 PBMC). Anti-MHC Class I and Class II antibodies inhibited cytokine production suggesting that both CD4+ and CD8+ T cells were involved in the anti-tumor immune responses. Vaccination was associated with induction of a sustained complete response in one patient and correlated with the generation of a potent anti-tumor T cell response. The remaining 10 patients progressed after a median duration of 8 months. We conclude that liposomal delivery of lymphoma membrane proteins is safe, induces tumor-specific CD4+ and CD8+ T cell responses, and may serve as a model for vaccine development against other human cancers. The induction of clinical response warrants further testing of this novel formulation in the setting of MRD where the immunosuppressive effects of the tumor are likely to be least.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 771-771
Author(s):  
Wen-Kai Weng ◽  
Debra Czerwinski ◽  
Ronald Levy

Abstract Vaccination with idiotype (Id) induces humoral and/or cellular anti-Id immune responses (IR). Recently, we found that anti-Id humoral IR and IgG Fc receptor FcγRIIIa (CD16) 158 Valine/Valine (V/V) correlated with better outcome in patients receiving Id vaccination (JCO 22:4717). Therefore, identifying factors that influence the development of anti-Id IR will provide important information on how to improve Id vaccination by aiming to increase IR. We examined the following factors for their possible effects on IR: prior induction chometherapy or not, prior fludarabine, clinical response to induction chemotherapy, the production method for Id protein, the immunologic adjuvants used during vaccination and the FcγR polymorphisms. One hundred and eighty follicular lymphoma patients who were treated with Id vaccination at Stanford Medical Center between 1988 and 2002 were included. One hundred and sixty four of them received induction chemotherapy, followed by Id vaccination, while 16 patients were treatment naive at the time of Id vaccination. Humoral and cellular IR were determined following Id vaccination by enzyme-linked immunosorbent assays and by T-cell proliferation assays, respectively, as described. Of these 180 patients, 65 (36%) developed humoral IR and 44 (24%) developed cellular IR after Id vaccination. The development of humoral IR was not affected by receiving induction chemotherapy or not, use of fludrarbine, responses to induction chemtherapy, Id protein production method, type of immunologic adjuvant, FcγRIIIa, FcγRIIa or FcγRIIb genotypes. On the other hand, the development of cellular IR was greatly enhanced by using either dendritic cells or GM-CSF as adjuvant compared to chemical adjuvant (chemical adjuvant: 12% vs dendritic cells: 34%, p=0.003; vs GM-CSF: 48%, p<0.0001) and in patients who received Id protein from molecular cloning (hybridoma: 17% vs molecular cloning: 44%, p=0.0004). However, there was no impact on cellular IR by: induction chemotherapy (23% vs 44%, p=0.072), use of fludrarbine (20% vs 24%, p=0.821), induction chemtherapy responses (CR/CRu: 25% vs PR: 18%, p=0.415), FcγRIIIa genotype (V/V: 27% vs F carrier: 16%, p=0.806), FcγRIIa genotype (H/H: 34% vs R carrier: 23%, p=0.316) and FcγRIIb genotype (I/I: 21% vs T carrier: 37%, p=0.061). A logistic regression analysis was performed to identify independent prognostic variables influencing the development of either humoral or cellular IR. Use of dendritic cells or GM-CSF adjuvant emerged as the only predictive factor independently predicting the development of cellular IR (odds ratio: 4.72, 95% CI: 1.88–11.85, p=0.001), while no predictive factor was identified for the development of humoral IR. This observation is consistent with the prevailing notion that dendritic cells and GM-CSF adjuvant can facilitate cellular IR immune response to various vaccines. It is interesting that PR patients after induction chemotherapy and fludarabine-treated patients had the same chance of developing humoral or cellular IR as did other patients. Therefore, these two groups of patients should not be excluded from subsequent vaccine trials on the assumption that they have impaired immune systems. It is also important to point out that none of these 180 patients received rituximab during induction therapy, which may significantly impair the ability to develop humoral IR.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2828-2833 ◽  
Author(s):  
Yiwen Li ◽  
Maurizio Bendandi ◽  
Yuping Deng ◽  
Cynthia Dunbar ◽  
Nikhil Munshi ◽  
...  

Immunoglobulin secreted by myeloma cells contains a unique antigenic determinant (idiotype [Id]) that may serve as a tumor-specific antigen. Although Id-protein–specific T-cell responses have been reported in patients with myeloma, it is not known whether primary myeloma tumor cells can present naturally processed Id peptides on their surface as a target. We immunized 2 healthy human stem-cell donors with Id proteins from their recipients. T cells from the immunized donors released high levels of T-helper 1–type cytokines in response to stimulation with myeloma cells from their recipients. The T-cell–mediated cytokine response to tumor cells was blocked by a major histocompatibility complex (MHC) class I monoclonal antibody, whereas the response to soluble Id protein was dependent on MHC class II. To investigate whether Id-specific CD8+ T cells can recognize and kill autologous myeloma cells, we generated T cells from peripheral blood mononuclear cells from a third patient with myeloma by means of in vitro stimulation with autologous dendritic cells pulsed with Id protein. Tumor-specific lysis of myeloma cells was demonstrated by the lack of killing of autologous nonmalignant B cells or natural killer–sensitive K562 cells. Lysis of autologous myeloma targets was restricted by MHC class I molecules. These data represent the first report of class I–restricted T-cell recognition of fresh autologous myeloma targets and formally demonstrate that human myeloma cells can serve as targets of an Id-specific T-cell response.


2012 ◽  
Vol 227 (5) ◽  
pp. 1851-1860 ◽  
Author(s):  
Jaemin Oh ◽  
Myeung Su Lee ◽  
Jeong-Tae Yeon ◽  
Sik-Won Choi ◽  
Hun Soo Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document