scholarly journals Author response: The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation

2018 ◽  
Author(s):  
Fabienne Lampert ◽  
Diana Stafa ◽  
Algera Goga ◽  
Martin Varis Soste ◽  
Samuel Gilberto ◽  
...  
Author(s):  
Leilani M. Chirino ◽  
Suresh Kumar ◽  
Mariko Okumura ◽  
David E. Sterner ◽  
Michael Mattern ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (6) ◽  
pp. 1111-1112
Author(s):  
Wei Tong

Abstract In this issue of Blood, Saur and colleagues report that ubiquitin-mediated degradation of the Mpl receptor constrains Tpo-mediated cell proliferation, highlighting the importance of the E3 ubiquitin ligase c-Cbl in rapid down-regulation of Tpo/Mpl signaling.


2012 ◽  
Vol 444 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Xue-Yuan Dong ◽  
Xiaoying Fu ◽  
Songqing Fan ◽  
Peng Guo ◽  
Dan Su ◽  
...  

We reported previously that the tumour suppressor ATBF1 (AT motif-binding factor 1) formed an autoregulatory feedback loop with oestrogen–ERα (oestrogen receptor α) signalling to regulate oestrogen-dependent cell proliferation in breast cancer cells. In this loop ATBF1 inhibits the function of oestrogen–ERα signalling, whereas ATBF1 protein levels are fine-tuned by oestrogen-induced transcriptional up-regulation as well as UPP (ubiquitin–proteasome pathway)-mediated protein degradation. In the present study we show that EFP (oestrogen-responsive finger protein) is an E3 ubiquitin ligase mediating oestrogen-induced ATBF1 protein degradation. Knockdown of EFP increases ATBF1 protein levels, whereas overexpression of EFP decreases ATBF1 protein levels. EFP interacts with and ubiquitinates ATBF1 protein. Furthermore, we show that EFP is an important factor in oestrogen-induced ATBF1 protein degradation in which some other factors are also involved. In human primary breast tumours the levels of ATBF1 protein are positively correlated with the levels of EFP protein, as both are directly up-regulated ERα target gene products. However, the ratio of ATBF1 protein to EFP protein is negatively correlated with EFP protein levels. Functionally, ATBF1 antagonizes EFP-mediated cell proliferation. These findings not only establish EFP as the E3 ubiquitin ligase for oestrogen-induced ATBF1 protein degradation, but further support the autoregulatory feedback loop between ATBF1 and oestrogen–ERα signalling and thus implicate ATBF1 in oestrogen-dependent breast development and carcinogenesis.


2006 ◽  
Vol 26 (8) ◽  
pp. 3114-3123 ◽  
Author(s):  
Yan Liu ◽  
Cyrus V. Hedvat ◽  
Shifeng Mao ◽  
Xin-Hua Zhu ◽  
Jinjuan Yao ◽  
...  

ABSTRACT MEF is an ETS-related transcription factor with strong transcriptional activating activity that affects hematopoietic stem cell behavior and is required for normal NK cell and NK T-cell development. The MEF (also known as ELF4) gene is repressed by several leukemia-associated fusion transcription factor proteins (PML-retinoic acid receptor α and AML1-ETO), but it is also activated by retroviral insertion in several cancer models. We have previously shown that cyclin A-dependent phosphorylation of MEF largely restricts its activity to the G1 phase of the cell cycle; we now show that MEF is a short-lived protein whose expression level also peaks during late G1 phase. Mutagenesis studies show that the rapid turnover of MEF in S phase is dependent on the specific phosphorylation of threonine 643 and serine 648 at the C terminus of MEF by cdk2 and on the Skp1/Cul1/F-box (SCF) E3 ubiquitin ligase complex SCFSkp2, which targets MEF for ubiquitination and proteolysis. Overexpression of MEF drives cells through the G1/S transition, thereby promoting cell proliferation. The tight regulation of MEF levels during the cell cycle contributes to its effects on regulating cell cycle entry and cell proliferation.


Author(s):  
Hantao Wang ◽  
Junjie Xing ◽  
Wei Wang ◽  
Guifen Lv ◽  
Haiyan He ◽  
...  

Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.


2021 ◽  
Vol 22 (21) ◽  
pp. 11875
Author(s):  
Fang Hua ◽  
Wenzhuo Hao ◽  
Lingyan Wang ◽  
Shitao Li

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-κB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-κB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that plakophilin 2 (PKP2) and the linear ubiquitin chain assembly complex (LUBAC) were required for EGFR-mediated NF-κB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IκB phosphorylation and subsequent NF-κB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-κB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-κB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR and that perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document