scholarly journals Linear Ubiquitination Mediates EGFR-Induced NF-κB Pathway and Tumor Development

2021 ◽  
Vol 22 (21) ◽  
pp. 11875
Author(s):  
Fang Hua ◽  
Wenzhuo Hao ◽  
Lingyan Wang ◽  
Shitao Li

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-κB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-κB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that plakophilin 2 (PKP2) and the linear ubiquitin chain assembly complex (LUBAC) were required for EGFR-mediated NF-κB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IκB phosphorylation and subsequent NF-κB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-κB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-κB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR and that perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.

Author(s):  
Fang Hua ◽  
Wenzhuo Hap ◽  
Lingyan Wang ◽  
Shitao Li

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-kB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-kB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that PKP2 and the LUBAC complex were required for EGFR-mediated NF-kB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IkB phosphorylation and subsequent NF-kB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-kB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-kB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR, and perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.


2004 ◽  
Vol 24 (17) ◽  
pp. 7748-7757 ◽  
Author(s):  
Xiuli Wu ◽  
Lily Yen ◽  
Lisa Irwin ◽  
Colleen Sweeney ◽  
Kermit L. Carraway

ABSTRACT Nrdp1 is a RING finger-containing E3 ubiquitin ligase that physically interacts with and regulates steady-state cellular levels of the ErbB3 and ErbB4 receptor tyrosine kinases and has been implicated in the degradation of the inhibitor-of-apoptosis protein BRUCE. Here we demonstrate that the Nrdp1 protein undergoes efficient proteasome-dependent degradation and that mutations in its RING finger domain that disrupt ubiquitin ligase activity enhance stability. These observations suggest that Nrdp1 self-ubiquitination and stability could play an important role in regulating the activity of this protein. Using affinity chromatography, we identified the deubiquitinating enzyme USP8 (also called Ubpy) as a protein that physically interacts with Nrdp1. Nrdp1 and USP8 could be coimmunoprecipitated, and in transfected cells USP8 specifically bound to Nrdp1 but not cbl, a RING finger E3 ligase involved in ligand-stimulated epidermal growth factor receptor down-regulation. The USP8 rhodanese and catalytic domains mediated Nrdp1 binding. USP8 markedly enhanced the stability of Nrdp1, and a point mutant that disrupts USP8 catalytic activity destabilized endogenous Nrdp1. Our results indicate that Nrdp1 is a specific target for the USP8 deubiquitinating enzyme and are consistent with a model where USP8 augments Nrdp1 activity by mediating its stabilization.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Fabienne Lampert ◽  
Diana Stafa ◽  
Algera Goga ◽  
Martin Varis Soste ◽  
Samuel Gilberto ◽  
...  

In yeast, the glucose-induced degradation-deficient (GID) E3 ligase selectively degrades superfluous gluconeogenic enzymes. Here, we identified all subunits of the mammalian GID/CTLH complex and provide a comprehensive map of its hierarchical organization and step-wise assembly. Biochemical reconstitution demonstrates that the mammalian complex possesses inherent E3 ubiquitin ligase activity, using Ube2H as its cognate E2. Deletions of multiple GID subunits compromise cell proliferation, and this defect is accompanied by deregulation of critical cell cycle markers such as the retinoblastoma (Rb) tumor suppressor, phospho-Histone H3 and Cyclin A. We identify the negative regulator of pro-proliferative genes Hbp1 as a bonafide GID/CTLH proteolytic substrate. Indeed, Hbp1 accumulates in cells lacking GID/CTLH activity, and Hbp1 physically interacts and is ubiquitinated in vitro by reconstituted GID/CTLH complexes. Our biochemical and cellular analysis thus demonstrates that the GID/CTLH complex prevents cell cycle exit in G1, at least in part by degrading Hbp1.


Blood ◽  
2012 ◽  
Vol 120 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Kim-Hien T. Dao ◽  
Michael D. Rotelli ◽  
Curtis L. Petersen ◽  
Stefanie Kaech ◽  
Whitney D. Nelson ◽  
...  

Abstract Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34+ stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.


2015 ◽  
Vol 29 (11) ◽  
pp. 1646-1657 ◽  
Author(s):  
Maiko Okada ◽  
Fumiaki Ohtake ◽  
Hiroyuki Nishikawa ◽  
Wenwen Wu ◽  
Yasushi Saeki ◽  
...  

Abstract Estrogen receptor (ER)α is a well-characterized ligand-dependent transcription factor. However, the global picture of its nongenomic functions remains to be illustrated. Here, we demonstrate a novel function of ERα during mitosis that facilitates estrogen-dependent cell proliferation. An E3 ubiquitin ligase, UBE3C, was identified in an ERα complex from estrogen-treated MCF-7 breast cancer cells arrested at mitosis. UBE3C interacts with ERα during mitosis in an estrogen-dependent manner. In vitro, estrogen dramatically stimulates the E3 activity of UBE3C in the presence of ERα. This effect was inhibited by the estrogen antagonist tamoxifen. Importantly, estrogen enhances the ubiquitination of cyclin B1 (CCNB1) and destabilizes CCNB1 during mitosis in a manner dependent on endogenous UBE3C. ERα, UBE3C, and CCNB1 colocalize in prophase nuclei and at metaphase spindles before CCNB1 is degraded in anaphase. Depletion of UBE3C attenuates estrogen-dependent cell proliferation without affecting the transactivation function of ERα. Collectively, these results demonstrate a novel ligand-dependent action of ERα that stimulates the activity of an E3 ligase. The mitotic role of estrogen may contribute to its effects on proliferation in addition to its roles in target gene expression.


Oncogene ◽  
2010 ◽  
Vol 29 (43) ◽  
pp. 5818-5827 ◽  
Author(s):  
T Qian ◽  
J-Y Lee ◽  
J-H Park ◽  
H-J Kim ◽  
G Kong

Plant Science ◽  
2007 ◽  
Vol 173 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Bong Soo Park ◽  
Wan Gyu Sang ◽  
Song Yion Yeu ◽  
Yang Do Choi ◽  
Nam-Chon Paek ◽  
...  

2021 ◽  
Author(s):  
◽  
Carla Coppola

In this study, I focused on a new family of receptors, called RMRs (Receptor-like Membrane RING-H2) and I tried to investigate their role in the moss Physcomitrium patens Mitten (previously Physcomitrella patens). There is some evidence that in Angiosperms, RMRs are vacuolar receptors for the neutral/storage vacuole that is a compartment where storage proteins and metabolites are accumulated during seeds development or in somatic tissues. It is distinguished from lytic vacuole which has the same functions as animal lysosomes. The five PpRMR genes have been knocked-out, yielding viable material without visible phenotype (Ayachi, 2012). A trafficking phenotype was described by Fahr (2017) who generated the construct Citrine-Cardosin (Ci-Card) composed of the fluorescent protein Citrine fused to the C-terminal vacuolar sorting determinant (ctVSD) from cardosin A (cardosin is addressed to the vacuole in higher plants —Pereira et al., 2013). The fusion protein was delivered to the central vacuole of PpWT but mistargeted in PpRMR-KO lines, indicating that the targeting of this protein to the vacuole depends on PpRMRs. The introduction of this thesis presents the plant endomembrane system, with particular attention to vacuolar transport and ubiquitylation. In the second chapter, I show the techniques used to attempt to detect PpRMRs by Western Blot: our failure may be due to a rapid degradation of these proteins, which could prevent their detection. In the third chapter, I focused on PpRMR2 involvement in ubiquitylation. We hypothesize that PpRMRs are E3 ligases because they are members of the PA-TM-RING protein family. Most of these proteins have an E3 ubiquitin ligase activity in animals (Seroogy et al., 2004; Borchers et al., 2002), for this reason, we think that plant PpRMRs could have this function as well, which could contribute to vacuolar targeting. Indeed, I could confirm that PpRMR2 has an E3 ubiquitin ligase activity. PpRMRs substrates are still unknown in moss thus we have analysed putative candidates supposing that they could be ubiquitylated by PpRMRs. We have tested this hypothesis through in vitro ubiquitylation assays, obtaining ambiguous results. In the fourth chapter, I show preliminary results about the visible phenotype of PpRMR-KO mutants: PpWT and PpRMR-KO lines displayed phenotypic differences in leafy gametophores, which were accentuated upon salt stress exposure. Lastly, I transformed the transgenic lines PpWT/Ci-Card and Pp5KO/Ci-Card with mutated versions of PpRMR2 and analysed their effect on vacuolar transport by confocal microscopy. For most of the constructions tested, the trafficking was perturbed in both lines. Only PpWT/Ci-Card expressing PpRMR2ΔSer (lacking the Serine-Rich motif) displayed a typical vacuolar pattern.


Sign in / Sign up

Export Citation Format

Share Document