miR-181a-2 downregulates the E3 ubiquitin ligase CUL4A transcript and promotes cell proliferation

2017 ◽  
Vol 34 (8) ◽  
Author(s):  
Venkateshwarlu Bandi ◽  
Sudhakar Baluchamy
Blood ◽  
2010 ◽  
Vol 115 (6) ◽  
pp. 1111-1112
Author(s):  
Wei Tong

Abstract In this issue of Blood, Saur and colleagues report that ubiquitin-mediated degradation of the Mpl receptor constrains Tpo-mediated cell proliferation, highlighting the importance of the E3 ubiquitin ligase c-Cbl in rapid down-regulation of Tpo/Mpl signaling.


2012 ◽  
Vol 444 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Xue-Yuan Dong ◽  
Xiaoying Fu ◽  
Songqing Fan ◽  
Peng Guo ◽  
Dan Su ◽  
...  

We reported previously that the tumour suppressor ATBF1 (AT motif-binding factor 1) formed an autoregulatory feedback loop with oestrogen–ERα (oestrogen receptor α) signalling to regulate oestrogen-dependent cell proliferation in breast cancer cells. In this loop ATBF1 inhibits the function of oestrogen–ERα signalling, whereas ATBF1 protein levels are fine-tuned by oestrogen-induced transcriptional up-regulation as well as UPP (ubiquitin–proteasome pathway)-mediated protein degradation. In the present study we show that EFP (oestrogen-responsive finger protein) is an E3 ubiquitin ligase mediating oestrogen-induced ATBF1 protein degradation. Knockdown of EFP increases ATBF1 protein levels, whereas overexpression of EFP decreases ATBF1 protein levels. EFP interacts with and ubiquitinates ATBF1 protein. Furthermore, we show that EFP is an important factor in oestrogen-induced ATBF1 protein degradation in which some other factors are also involved. In human primary breast tumours the levels of ATBF1 protein are positively correlated with the levels of EFP protein, as both are directly up-regulated ERα target gene products. However, the ratio of ATBF1 protein to EFP protein is negatively correlated with EFP protein levels. Functionally, ATBF1 antagonizes EFP-mediated cell proliferation. These findings not only establish EFP as the E3 ubiquitin ligase for oestrogen-induced ATBF1 protein degradation, but further support the autoregulatory feedback loop between ATBF1 and oestrogen–ERα signalling and thus implicate ATBF1 in oestrogen-dependent breast development and carcinogenesis.


2021 ◽  
Vol 22 (21) ◽  
pp. 11875
Author(s):  
Fang Hua ◽  
Wenzhuo Hao ◽  
Lingyan Wang ◽  
Shitao Li

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-κB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-κB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that plakophilin 2 (PKP2) and the linear ubiquitin chain assembly complex (LUBAC) were required for EGFR-mediated NF-κB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IκB phosphorylation and subsequent NF-κB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-κB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-κB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR and that perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.


2021 ◽  
Author(s):  
Hanjun Dai ◽  
wen ZENG ◽  
WEIJUAN ZENG ◽  
MING YAN ◽  
ping jiang ◽  
...  

Abstract Retinoblastoma is a rare ocular tumor in children that originates in the retina. Several core transcriptional regulators maintain the expansion of retinoblastoma tumors, including c-Myc. Here, we demonstrated that Helicase with zinc finger domain 2 (HELZ2) promoted retinoblastoma tumorigenesis by targeting c-Myc. HELZ2-deficient inhibited retinoblastoma cell proliferation, whereas overexpression of HELZ2 promoted retinoblastoma cell proliferation. In addition, high levels of HELZ2 promoted xenograft retinoblastoma tumorigenesis and inhibited animal survival. Mechanistically, HELZ2 interacted with c-Myc and promoted its K63-linked polyubiquitination. We indicated that HELZ2 promoted the interaction between E3 ubiquitin ligase HUWE1 and c-Myc, and HELZ2-mediated K63-linked polyubiquitination and activation of c-Myc were dependent on HUWE1. Taken together, HELZ2 plays a critical role in the regulation of retinoblastoma tumorigenesis by enhancing the activity of c-Myc.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingting Li ◽  
Xian Wang ◽  
Enguo Ju ◽  
Suzane Ramos da Silva ◽  
Luping Chen ◽  
...  

AbstractmTORC1, a central controller of cell proliferation in response to growth factors and nutrients, is dysregulated in cancer. Whereas arginine activates mTORC1, it is overridden by high expression of cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1). Because cancer cells often encounter low levels of nutrients, an alternative mechanism might exist to regulate CASTOR1 expression. Here we show K29-linked polyubiquitination and degradation of CASTOR1 by E3 ubiquitin ligase RNF167. Furthermore, AKT phosphorylates CASTOR1 at S14, significantly increasing its binding to RNF167, and hence its ubiquitination and degradation, while simultaneously decreasing its affinity to MIOS, leading to mTORC1 activation. Therefore, AKT activates mTORC1 through both TSC2- and CASTOR1-dependent pathways. Several cell types with high CASTOR1 expression are insensitive to arginine regulation. Significantly, AKT and RNF167-mediated CASTOR1 degradation activates mTORC1 independent of arginine and promotes breast cancer progression. These results illustrate a mTORC1 regulating mechanism and identify RNF167 as a therapeutic target for mTORC1-dysregulated diseases.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Aytug Kizilors ◽  
Mark R. Pickard ◽  
Cathleen E. Schulte ◽  
Kiren Yacqub-Usman ◽  
Nicola J. McCarthy ◽  
...  

The E3 ubiquitin ligase RNF168 is a ring finger protein that has been previously identified to play an important regulatory role in the repair of double-strand DNA breaks. In the present study, an unbiased forward genetics functional screen in mouse granulocyte/macrophage progenitor cell line FDCP1 has identified E3 ubiquitin ligase RNF168 as a key regulator of cell survival and proliferation. Our data indicate that RNF168 is an important component of the mechanisms controlling cell fate, not only in human and mouse haematopoietic growth factor dependent cells, but also in the human breast epithelial cell line MCF-7. These observations therefore suggest that RNF168 provides a connection to key pathways controlling cell fate, potentially through interaction with PML nuclear bodies and/or epigenetic control of gene expression. Our study is the first to demonstrate a critical role for RNF168 in the mechanisms regulating cell proliferation and survival, in addition to its well-established role in DNA repair.


Author(s):  
Fang Hua ◽  
Wenzhuo Hap ◽  
Lingyan Wang ◽  
Shitao Li

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-kB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-kB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that PKP2 and the LUBAC complex were required for EGFR-mediated NF-kB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IkB phosphorylation and subsequent NF-kB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-kB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-kB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR, and perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.


2015 ◽  
Vol 48 (3) ◽  
pp. 338-347 ◽  
Author(s):  
Yuyin Li ◽  
Li Zhang ◽  
Jie Zhou ◽  
Shenheng Luo ◽  
Rui Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document