scholarly journals Constraints on neural redundancy

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jay A Hennig ◽  
Matthew D Golub ◽  
Peter J Lund ◽  
Patrick T Sadtler ◽  
Emily R Oby ◽  
...  

Millions of neurons drive the activity of hundreds of muscles, meaning many different neural population activity patterns could generate the same movement. Studies have suggested that these redundant (i.e. behaviorally equivalent) activity patterns may be beneficial for neural computation. However, it is unknown what constraints may limit the selection of different redundant activity patterns. We leveraged a brain-computer interface, allowing us to define precisely which neural activity patterns were redundant. Rhesus monkeys made cursor movements by modulating neural activity in primary motor cortex. We attempted to predict the observed distribution of redundant neural activity. Principles inspired by work on muscular redundancy did not accurately predict these distributions. Surprisingly, the distributions of redundant neural activity and task-relevant activity were coupled, which enabled accurate predictions of the distributions of redundant activity. This suggests limits on the extent to which redundancy may be exploited by the brain for computation.

2019 ◽  
Vol 116 (30) ◽  
pp. 15210-15215 ◽  
Author(s):  
Emily R. Oby ◽  
Matthew D. Golub ◽  
Jay A. Hennig ◽  
Alan D. Degenhart ◽  
Elizabeth C. Tyler-Kabara ◽  
...  

Learning has been associated with changes in the brain at every level of organization. However, it remains difficult to establish a causal link between specific changes in the brain and new behavioral abilities. We establish that new neural activity patterns emerge with learning. We demonstrate that these new neural activity patterns cause the new behavior. Thus, the formation of new patterns of neural population activity can underlie the learning of new skills.


2021 ◽  
Author(s):  
Seitaro Iwama ◽  
Zhang Yichi ◽  
Junichi Ushiba

Human brains are capable of modulating innate activities to adapt to novel environmental stimuli; for sensorimotor cortices (SM1) this means acquisition of a rich repertoire of motor behaviors. We investigated the adaptability of human SM1 motor control by analyzing net neural population activity during the learning of brain-computer interface (BCI) operations. We found systematic interactions between the neural manifold of cortical population activities and BCI classifiers; the neural manifold was stretched by rescaling motor-related features of electroencephalograms with model-based fixed classifiers, but not with adaptive classifiers that were constantly recalibrated to user activity. Moreover, operation of a BCI based on a de novo classifier with a fixed decision boundary based on biologically unnatural features, deformed the neural manifold to be orthogonal to the boundary. These principles of neural adaptation at a macroscopic level may underlie the ability of humans to learn wide-ranging behavioral repertoires and adapt to novel environments.


Author(s):  
Isaac Morán ◽  
Javier Perez-Orive ◽  
Jonathan Melchor ◽  
Tonatiuh Figueroa ◽  
Luis Lemus

AbstractIn human speech and communication across various species, recognizing and categorizing sounds is fundamental for the selection of appropriate behaviors. But how does the brain decide which action to perform based on sounds? We explored whether the premotor supplementary motor area (SMA), responsible for linking sensory information to motor programs, also accounts for auditory-driven decision making. To this end, we trained two rhesus monkeys to discriminate between numerous naturalistic sounds and words learned as target (T) or non-target (nT) categories. We demonstrated that the neural population is organized differently during the auditory and the movement periods of the task, implying that it is performing different computations in each period. We found that SMA neurons perform acoustic-decision-related computations that transition from auditory to movement representations in this task. Our results suggest that the SMA integrates sensory information while listening to auditory stimuli in order to form categorical signals that drive behavior.


2017 ◽  
Vol 24 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Selen Atasoy ◽  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Joel Pearson

A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at “rest.” Here, we introduce the concept of harmonic brain modes—fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Adrian Ponce-Alvarez ◽  
Gabriela Mochol ◽  
Ainhoa Hermoso-Mendizabal ◽  
Jaime de la Rocha ◽  
Gustavo Deco

Previous research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as ‘stiff’ dimensions, while it is insensitive to many others (‘sloppy’ dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.


2019 ◽  
Author(s):  
Adrián Ponce-Alvarez ◽  
Gabriela Mochol ◽  
Ainhoa Hermoso-Mendizabal ◽  
Jaime de la Rocha ◽  
Gustavo Deco

SummaryPrevious research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as “stiff” dimensions, while it is insensitive to many others (“sloppy” dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.


2020 ◽  
Vol 375 (1799) ◽  
pp. 20190231 ◽  
Author(s):  
David Tingley ◽  
Adrien Peyrache

A major task in the history of neurophysiology has been to relate patterns of neural activity to ongoing external stimuli. More recently, this approach has branched out to relating current neural activity patterns to external stimuli or experiences that occurred in the past or future. Here, we aim to review the large body of methodological approaches used towards this goal, and to assess the assumptions each makes with reference to the statistics of neural data that are commonly observed. These methods primarily fall into two categories, those that quantify zero-lag relationships without examining temporal evolution, termed reactivation , and those that quantify the temporal structure of changing activity patterns, termed replay . However, no two studies use the exact same approach, which prevents an unbiased comparison between findings. These observations should instead be validated by multiple and, if possible, previously established tests. This will help the community to speak a common language and will eventually provide tools to study, more generally, the organization of neuronal patterns in the brain. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.


2017 ◽  
Vol 29 (12) ◽  
pp. 3119-3180 ◽  
Author(s):  
Adrianna Loback ◽  
Jason Prentice ◽  
Mark Ioffe ◽  
Michael Berry II

An appealing new principle for neural population codes is that correlations among neurons organize neural activity patterns into a discrete set of clusters, which can each be viewed as a noise-robust population codeword. Previous studies assumed that these codewords corresponded geometrically with local peaks in the probability landscape of neural population responses. Here, we analyze multiple data sets of the responses of approximately 150 retinal ganglion cells and show that local probability peaks are absent under broad, nonrepeated stimulus ensembles, which are characteristic of natural behavior. However, we find that neural activity still forms noise-robust clusters in this regime, albeit clusters with a different geometry. We start by defining a soft local maximum, which is a local probability maximum when constrained to a fixed spike count. Next, we show that soft local maxima are robustly present and can, moreover, be linked across different spike count levels in the probability landscape to form a ridge. We found that these ridges comprise combinations of spiking and silence in the neural population such that all of the spiking neurons are members of the same neuronal community, a notion from network theory. We argue that a neuronal community shares many of the properties of Donald Hebb's classic cell assembly and show that a simple, biologically plausible decoding algorithm can recognize the presence of a specific neuronal community.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Matthew D Golub ◽  
Byron M Yu ◽  
Steven M Chase

To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects’ internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hideaki Shimazaki ◽  
Kolia Sadeghi ◽  
Tomoe Ishikawa ◽  
Yuji Ikegaya ◽  
Taro Toyoizumi

Abstract Activity patterns of neural population are constrained by underlying biological mechanisms. These patterns are characterized not only by individual activity rates and pairwise correlations but also by statistical dependencies among groups of neurons larger than two, known as higher-order interactions (HOIs). While HOIs are ubiquitous in neural activity, primary characteristics of HOIs remain unknown. Here, we report that simultaneous silence (SS) of neurons concisely summarizes neural HOIs. Spontaneously active neurons in cultured hippocampal slices express SS that is more frequent than predicted by their individual activity rates and pairwise correlations. The SS explains structured HOIs seen in the data, namely, alternating signs at successive interaction orders. Inhibitory neurons are necessary to maintain significant SS. The structured HOIs predicted by SS were observed in a simple neural population model characterized by spiking nonlinearity and correlated input. These results suggest that SS is a ubiquitous feature of HOIs that constrain neural activity patterns and can influence information processing.


Sign in / Sign up

Export Citation Format

Share Document