scholarly journals An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ji Li ◽  
Peter S Choi ◽  
Christine L Chaffer ◽  
Katherine Labella ◽  
Justin H Hwang ◽  
...  

Alternative splicing of mRNA precursors represents a key gene expression regulatory step and permits the generation of distinct protein products with diverse functions. In a genome-scale expression screen for inducers of the epithelial-to-mesenchymal transition (EMT), we found a striking enrichment of RNA-binding proteins. We validated that QKI and RBFOX1 were necessary and sufficient to induce an intermediate mesenchymal cell state and increased tumorigenicity. Using RNA-seq and eCLIP analysis, we found that QKI and RBFOX1 coordinately regulated the splicing and function of the actin-binding protein FLNB, which plays a causal role in the regulation of EMT. Specifically, the skipping of FLNB exon 30 induced EMT by releasing the FOXC1 transcription factor. Moreover, skipping of FLNB exon 30 is strongly associated with EMT gene signatures in basal-like breast cancer patient samples. These observations identify a specific dysregulation of splicing, which regulates tumor cell plasticity and is frequently observed in human cancer.

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6261
Author(s):  
Jamal Elhasnaoui ◽  
Giulio Ferrero ◽  
Valentina Miano ◽  
Santina Cutrupi ◽  
Michele De De Bortoli

Background: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC) is extensively characterized. Our group has previously shown that ERα controls the expression of a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events. Methods: apoERα-mediated RNA processing events were characterized by the analysis of transcript usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-induced ERα downregulation. Results: ApoERα depletion induced an expression change of 681 RBPs, including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3′end processing. ApoERα depletion results in 758 isoform switching events with effects on 3′end length and the splicing of alternative cassette exons. The functional enrichment of these events shows that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the experimentally identified alternatively spliced exons are associated with overall and disease-free survival. Conclusion: Our data supports the role of apoERα in maintaining the luminal phenotype of BC cells by extensively regulating gene expression at the alternative splicing level.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yarden Katz ◽  
Feifei Li ◽  
Nicole J Lambert ◽  
Ethan S Sokol ◽  
Wai-Leong Tam ◽  
...  

The conserved Musashi (Msi) family of RNA binding proteins are expressed in stem/progenitor and cancer cells, but generally absent from differentiated cells, consistent with a role in cell state regulation. We found that Msi genes are rarely mutated but frequently overexpressed in human cancers and are associated with an epithelial-luminal cell state. Using ribosome profiling and RNA-seq analysis, we found that Msi proteins regulate translation of genes implicated in epithelial cell biology and epithelial-to-mesenchymal transition (EMT), and promote an epithelial splicing pattern. Overexpression of Msi proteins inhibited the translation of Jagged1, a factor required for EMT, and repressed EMT in cell culture and in mammary gland in vivo. Knockdown of Msis in epithelial cancer cells promoted loss of epithelial identity. Our results show that mammalian Msi proteins contribute to an epithelial gene expression program in neural and mammary cell types.


2018 ◽  
Author(s):  
Ji Li ◽  
Peter S Choi ◽  
Christine L Chaffer ◽  
Katherine Labella ◽  
Justin H Hwang ◽  
...  

Author(s):  
Laura Urbanski ◽  
Brittany Angarola ◽  
Mattia Brugiolo ◽  
Marina Yurieva ◽  
Sunghee Park ◽  
...  

NAR Cancer ◽  
2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Neha Ahuja ◽  
Cheemala Ashok ◽  
Subhashis Natua ◽  
Deepak Pant ◽  
Anna Cherian ◽  
...  

Abstract Hypoxic microenvironment heralds epithelial–mesenchymal transition (EMT), invasion and metastasis in solid tumors. Deregulation of alternative splicing (AS) of several cancer-associated genes has been instrumental in hypoxia-induced EMT. Our study in breast cancer unveils a previously unreported mechanism underlying hypoxia-mediated AS of hMENA, a crucial cytoskeleton remodeler during EMT. We report that the hypoxia-driven depletion of splicing regulator ESRP1 leads to skipping of hMENA exon 11a producing a pro-metastatic isoform, hMENAΔ11a. The transcriptional repression of ESRP1 is mediated by SLUG, which gets stimulated via hypoxia-driven TGF-β signaling. Interestingly, RBFOX2, an otherwise RNA-binding protein, is also found to transcriptionally repress ESRP1 while interacting with SLUG. Similar to SLUG, RBFOX2 gets upregulated under hypoxia via TGF-β signaling. Notably, we found that the exosomal delivery of TGF-β contributes to the elevation of TGF-β signaling under hypoxia. Moreover, our results show that in addition to hMENA, hypoxia-induced TGF-β signaling contributes to global changes in AS of genes associated with EMT. Overall, our findings reveal a new paradigm of hypoxia-driven AS regulation of hMENA and insinuate important implications in therapeutics targeting EMT.


2014 ◽  
Author(s):  
Yarden Katz ◽  
Feifei Li ◽  
Nicole Lambert ◽  
Ethan M Sokol ◽  
Wai-Leong Tam ◽  
...  

The conserved Musashi (Msi) family of RNA binding proteins are expressed in stem/progenitor and cancer cells, but mostly absent from differentiated cells, consistent with a role in cell state regulation. We found that Msi genes are rarely mutated but frequently overexpressed in human cancers, and associated with an epithelial-luminal cell state. Using ribosome footprint profiling and RNA-seq analysis of genetic mouse models in neuronal and mammary cell types, we found that Msis regulate translation of genes implicated in epithelial cell biology and epithelial-to-mesenchymal transition (EMT) and promote an epithelial splicing pattern. Overexpression of Msi proteins inhibited translation of genes required for EMT, including Jagged1, and repressed EMT in cell culture and in mammary gland in vivo, while knockdown in epithelial cancer cells led to loss of epithelial identity. Our results show that mammalian Msi proteins contribute to an epithelial gene expression program and promote an epithelial-luminal state in both neural and breast cell types.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Fengxia Chen ◽  
Qingqing Wang ◽  
Xiaoyan Yu ◽  
Ningning Yang ◽  
Yuan Wang ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is the most aggressive subtype with the worst prognosis and the highest metastatic and recurrence potential, which represents 15–20% of all breast cancers in Chinese females, and the 5-year overall survival rate is about 80% in Chinese women. Recently, emerging evidence suggested that aberrant alternative splicing (AS) plays a crucial role in tumorigenesis and progression. AS is generally controlled by AS-associated RNA binding proteins (RBPs). Monocyte chemotactic protein induced protein 1 (MCPIP1), a zinc finger RBP, functions as a tumor suppressor in many cancers. Here, we showed that MCPIP1 was downregulated in 80 TNBC tissues and five TNBC cell lines compared to adjacent paracancerous tissues and one human immortalized breast epithelial cell line, while its high expression levels were associated with increased overall survival in TNBC patients. We demonstrated that MCPIP1 overexpression dramatically suppressed cell cycle progression and proliferation of TNBC cells in vitro and repressed tumor growth in vivo. Mechanistically, MCPIP1 was first demonstrated to act as a splicing factor to regulate AS in TNBC cells. Furthermore, we demonstrated that MCPIP1 modulated NFIC AS to promote CTF5 synthesis, which acted as a negative regulator in TNBC cells. Subsequently, we showed that CTF5 participated in MCPIP1-mediated antiproliferative effect by transcriptionally repressing cyclin D1 expression, as well as downregulating its downstream signaling targets p-Rb and E2F1. Conclusively, our findings provided novel insights into the anti-oncogenic mechanism of MCPIP1, suggesting that MCPIP1 could serve as an alternative treatment target in TNBC.


2021 ◽  
pp. 1-6
Author(s):  
Miriam C. Aziz ◽  
Patricia N. Schneider ◽  
Gemma L. Carvill

Developmental and epileptic encephalopathies (DEEs) describe a subset of neurodevelopmental disorders categorized by refractory epilepsy that is often associated with intellectual disability and autism spectrum disorder. The majority of DEEs are now known to have a genetic basis with de novo coding variants accounting for the majority of cases. More recently, a small number of individuals have been identified with intronic <i>SCN1A</i> variants that result in alternative splicing events that lead to ectopic inclusion of poison exons (PEs). PEs are short highly conserved exons that contain a premature truncation codon, and when spliced into the transcript, lead to premature truncation and subsequent degradation by nonsense-mediated decay. The reason for the inclusion/exclusion of these PEs is not entirely clear, but research suggests an autoregulatory role in gene expression and protein abundance. This is seen in proteins such as RNA-binding proteins and serine/arginine-rich proteins. Recent studies have focused on targeting these PEs as a method for therapeutic intervention. Targeting PEs using antisense oligonucleotides (ASOs) has shown to be effective in modulating alternative splicing events by decreasing the amount of transcripts harboring PEs, thus increasing the abundance of full-length transcripts and thereby the amount of protein in haploinsufficient genes implicated in DEE. In the age of personalized medicine, cellular and animal models of the genetic epilepsies have become essential in developing and testing novel precision therapeutics, including PE-targeting ASOs in a subset of DEEs.


Sign in / Sign up

Export Citation Format

Share Document