scholarly journals Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Anika Küken ◽  
Frederik Sommer ◽  
Liliya Yaneva-Roder ◽  
Luke CM Mackinder ◽  
Melanie Höhne ◽  
...  

Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.

IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Hiroki Noguchi ◽  
Christine Addy ◽  
David Simoncini ◽  
Staf Wouters ◽  
Bram Mylemans ◽  
...  

β-Propeller proteins form one of the largest families of protein structures, with a pseudo-symmetrical fold made up of subdomains called blades. They are not only abundant but are also involved in a wide variety of cellular processes, often by acting as a platform for the assembly of protein complexes. WD40 proteins are a subfamily of propeller proteins with no intrinsic enzymatic activity, but their stable, modular architecture and versatile surface have allowed evolution to adapt them to many vital roles. By computationally reverse-engineering the duplication, fusion and diversification events in the evolutionary history of a WD40 protein, a perfectly symmetrical homologue called Tako8 was made. If two or four blades of Tako8 are expressed as single polypeptides, they do not self-assemble to complete the eight-bladed architecture, which may be owing to the closely spaced negative charges inside the ring. A different computational approach was employed to redesign Tako8 to create Ika8, a fourfold-symmetrical protein in which neighbouring blades carry compensating charges. Ika2 and Ika4, carrying two or four blades per subunit, respectively, were found to assemble spontaneously into a complete eight-bladed ring in solution. These artificial eight-bladed rings may find applications in bionanotechnology and as models to study the folding and evolution of WD40 proteins.


2020 ◽  
Author(s):  
Claudio Tomi-Andrino ◽  
Rupert Norman ◽  
Thomas Millat ◽  
Philippe Soucaille ◽  
Klaus Winzer ◽  
...  

AbstractMetabolic engineering in the post-genomic era is characterised by the development of new methods for metabolomics and fluxomics, supported by the integration of genetic engineering tools and mathematical modelling. Particularly, constraint-based stoichiometric models have been widely studied: (i) flux balance analysis (FBA) (in silico), and (ii) metabolic flux analysis (MFA) (in vivo). Recent studies have enabled the incorporation of thermodynamics and metabolomics data to improve the predictive capabilities of these approaches. However, an in-depth comparison and evaluation of these methods is lacking. This study presents a thorough analysis of two different in silico methods tested against experimental data (metabolomics and 13C-MFA) for the mesophile Escherichia coli. In particular, a modified version of the recently published matTFA toolbox was created, providing a broader range of physicochemical parameters. Validating against experimental data allowed the determination of the best physicochemical parameters to perform the TFA (Thermodynamics-based Flux Analysis). An analysis of flux pattern changes in the central carbon metabolism between 13C-MFA and TFA highlighted the limited capabilities of both approaches for elucidating the anaplerotic fluxes. In addition, a method based on centrality measures was suggested to identify important metabolites that (if quantified) would allow to further constrain the TFA. Finally, this study emphasised the need for standardisation in the fluxomics community: novel approaches are frequently released but a thorough comparison with currently accepted methods is not always performed.Author summaryBiotechnology has benefitted from the development of high throughput methods characterising living systems at different levels (e.g. concerning genes or proteins), allowing the industrial production of chemical commodities. Recently, focus has been placed on determining reaction rates (or metabolic fluxes) in the metabolic network of certain microorganisms, in order to identify bottlenecks hindering their exploitation. Two main approaches are commonly used, termed metabolic flux analysis (MFA) and flux balance analysis (FBA), based on measuring and estimating fluxes, respectively. While the influence of thermodynamics in living systems was accepted several decades ago, its application to study biochemical networks has only recently been enabled. In this sense, a multitude of different approaches constraining well-established modelling methods with thermodynamics has been suggested. However, physicochemical parameters are generally not properly adjusted to the experimental conditions, which might affect their predictive capabilities. In this study, we have explored the reliability of currently available tools by investigating the impact of varying said parameters in the simulation of metabolic fluxes and metabolite concentration values. Additionally, our in-depth analysis allowed us to highlight limitations and potential solutions that should be considered in future studies.


2018 ◽  
Vol 1864 (11) ◽  
pp. 3650-3658 ◽  
Author(s):  
Iliana A. Chatzispyrou ◽  
Sergio Guerrero-Castillo ◽  
Ntsiki M. Held ◽  
Jos P.N. Ruiter ◽  
Simone W. Denis ◽  
...  

2016 ◽  
Vol 113 (52) ◽  
pp. 15060-15065 ◽  
Author(s):  
Niels G. A. Kuijpers ◽  
Daniel Solis-Escalante ◽  
Marijke A. H. Luttik ◽  
Markus M. M. Bisschops ◽  
Francine J. Boonekamp ◽  
...  

Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of “pathway swapping,” using yeast glycolysis as the experimental model. Construction of a “single-locus glycolysis” Saccharomyces cerevisiae platform enabled quick and easy replacement of this yeast’s entire complement of 26 glycolytic isoenzymes by any alternative, functional glycolytic pathway configuration. The potential of this approach was demonstrated by the construction and characterization of S. cerevisiae strains whose growth depended on two nonnative glycolytic pathways: a complete glycolysis from the related yeast Saccharomyces kudriavzevii and a mosaic glycolysis consisting of yeast and human enzymes. This work demonstrates the feasibility and potential of modular, combinatorial approaches to engineering and analysis of core cellular processes.


2019 ◽  
Vol 48 (2) ◽  
pp. 996-1009 ◽  
Author(s):  
Yaokang Wu ◽  
Taichi Chen ◽  
Yanfeng Liu ◽  
Rongzhen Tian ◽  
Xueqin Lv ◽  
...  

Abstract Dynamic regulation is an effective strategy for fine-tuning metabolic pathways in order to maximize target product synthesis. However, achieving dynamic and autonomous up- and down-regulation of the metabolic modules of interest simultaneously, still remains a great challenge. In this work, we created an autonomous dual-control (ADC) system, by combining CRISPRi-based NOT gates with novel biosensors of a key metabolite in the pathway of interest. By sensing the levels of the intermediate glucosamine-6-phosphate (GlcN6P) and self-adjusting the expression levels of the target genes accordingly with the GlcN6P biosensor and ADC system enabled feedback circuits, the metabolic flux towards the production of the high value nutraceutical N-acetylglucosamine (GlcNAc) could be balanced and optimized in Bacillus subtilis. As a result, the GlcNAc titer in a 15-l fed-batch bioreactor increased from 59.9 g/l to 97.1 g/l with acetoin production and 81.7 g/l to 131.6 g/l without acetoin production, indicating the robustness and stability of the synthetic circuits in a large bioreactor system. Remarkably, this self-regulatory methodology does not require any external level of control such as the use of inducer molecules or switching fermentation/environmental conditions. Moreover, the proposed programmable genetic circuits may be expanded to engineer other microbial cells and metabolic pathways.


2010 ◽  
Vol 1 (4) ◽  
pp. 391-405 ◽  
Author(s):  
T. Binsl ◽  
A. De Graaf ◽  
K. Venema ◽  
J. Heringa ◽  
A. Maathuis ◽  
...  

This paper explores human gut bacterial metabolism of starch using a combined analytical and computational modelling approach for metabolite and flux analysis. Non-steady-state isotopic labelling experiments were performed with human faecal microbiota in a well-established in vitro model of the human colon. After culture stabilisation, [U-13C] starch was added and samples were taken at regular intervals. Metabolite concentrations and 13C isotopomeric distributions were measured amongst other things for acetate, propionate and butyrate by mass spectrometry and NMR. The vast majority of metabolic flux analysis methods based on isotopomer analysis published to date are not applicable to metabolic non-steady-state experiments. We therefore developed a new ordinary differential equation-based representation of a metabolic model of human faecal microbiota to determine eleven metabolic parameters that characterised the metabolic flux distribution in the isotope labelling experiment. The feasibility of the model parameter quantification was demonstrated on noisy in silico data using a downhill simplex optimisation, matching simulated labelling patterns of isotopically labelled metabolites with measured metabolite and isotope labelling data. Using the experimental data, we determined an increasing net label influx from starch during the experiment from 94±1 µmol/l/min to 133±3 µmol/l/min. Only about 12% of the total carbon flux from starch reached propionate. Propionate production mainly proceeded via succinate with a small contribution via acrylate. The remaining flux from starch yielded acetate (35%) and butyrate (53%). Interpretation of 13C NMR multiplet signals further revealed that butyrate, valerate and caproate were mainly synthesised via cross-feeding, using acetate as a co-substrate. This study demonstrates for the first time that the experimental design and the analysis of the results by computational modelling allows the determination of time-resolved effects of nutrition on the flux distribution within human faecal microbiota in metabolic non-steady-state.


1998 ◽  
Vol 254 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Helene Dominguez ◽  
Catherine Rollin ◽  
Armel Guyonvarch ◽  
Jean-Luc Guerquin-Kern ◽  
Muriel Cocaign-Bousquet ◽  
...  

2020 ◽  
Vol 219 (3) ◽  
Author(s):  
Fred D. Mast ◽  
Richard A. Rachubinski ◽  
John D. Aitchison

Peroxisomes play a central role in human health and have biochemical properties that promote their use in many biotechnology settings. With a primary role in lipid metabolism, peroxisomes share a niche with lipid droplets within the endomembrane-secretory system. Notably, factors in the ER required for the biogenesis of peroxisomes also impact the formation of lipid droplets. The dynamic interface between peroxisomes and lipid droplets, and also between these organelles and the ER and mitochondria, controls their metabolic flux and their dynamics. Here, we review our understanding of peroxisome biogenesis to propose and reframe models for understanding how peroxisomes are formed in cells. To more fully understand the roles of peroxisomes and to take advantage of their many properties that may prove useful in novel therapeutics or biotechnology applications, we recast mechanisms controlling peroxisome biogenesis in a framework that integrates inference from these models with experimental data.


Sign in / Sign up

Export Citation Format

Share Document