scholarly journals The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Lucas Tafur ◽  
Yashar Sadian ◽  
Jonas Hanske ◽  
Rene Wetzel ◽  
Felix Weis ◽  
...  

RNA polymerase (Pol) I is a 14-subunit enzyme that solely transcribes pre-ribosomal RNA. Cryo-electron microscopy (EM) structures of Pol I initiation and elongation complexes have given first insights into the molecular mechanisms of Pol I transcription. Here, we present cryo-EM structures of yeast Pol I elongation complexes (ECs) bound to the nucleotide analog GMPCPP at 3.2 to 3.4 Å resolution that provide additional insight into the functional interplay between the Pol I-specific transcription-like factors A49-A34.5 and A12.2. Strikingly, most of the nucleotide-bound ECs lack the A49-A34.5 heterodimer and adopt a Pol II-like conformation, in which the A12.2 C-terminal domain is bound in a previously unobserved position at the A135 surface. Our structural and biochemical data suggest a mechanism where reversible binding of the A49-A34.5 heterodimer could contribute to the regulation of Pol I transcription initiation and elongation.

2018 ◽  
Author(s):  
Lucas Tafur ◽  
Yashar Sadian ◽  
Rene Wetzel ◽  
Felix Weis ◽  
Christoph W. Müller

AbstractRNA polymerase (Pol) I is a 14-subunit enzyme that solely transcribes pre-ribosomal RNA. Cryo-EM structures of Pol I initiation and elongation complexes have given first insights into the molecular mechanisms of Pol I transcription. Here, we present cryo-electron microscopy structures of yeast Pol I elongation complexes (ECs) bound to the nucleotide analog GMPCPP at 3.2 to 3.4 Å resolution that provide additional insight into the functional interplay between the TFIIE/TFIIF-like A49-A34.5 heterodimer and the TFIIS-like subunit A12.2 present in Pol I. Strikingly, most of the nucleotide-bound ECs lack the A49-A34.5 heterodimer and adopt a Pol II-like conformation, in which the A12.2 C-terminal domain is bound in a previously unobserved position at the A135 surface. Our work suggests a regulatory mechanism of Pol I transcription where the association of the A49-A34.5 heterodimer to Pol I is regulated by subunit A12.2, thereby explaining in vitro biochemical and kinetic data.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yashar Sadian ◽  
Florence Baudin ◽  
Lucas Tafur ◽  
Brice Murciano ◽  
Rene Wetzel ◽  
...  

AbstractRNA polymerase I (Pol I) assembles with core factor (CF) and Rrn3 on the rDNA core promoter for transcription initiation. Here, we report cryo-EM structures of closed, intermediate and open Pol I initiation complexes from 2.7 to 3.7 Å resolution to visualize Pol I promoter melting and to structurally and biochemically characterize the recognition mechanism of Pol I promoter DNA. In the closed complex, double-stranded DNA runs outside the DNA-binding cleft. Rotation of CF and upstream DNA with respect to Pol I and Rrn3 results in the spontaneous loading and opening of the promoter followed by cleft closure and positioning of the Pol I A49 tandem winged helix domain (tWH) onto DNA. Conformational rearrangement of A49 tWH leads to a clash with Rrn3 to initiate complex disassembly and promoter escape. Comprehensive insight into the Pol I transcription initiation cycle allows comparisons with promoter opening by Pol II and Pol III.


2015 ◽  
Vol 35 (13) ◽  
pp. 2321-2331 ◽  
Author(s):  
Krysta L. Engel ◽  
Sarah L. French ◽  
Olga V. Viktorovskaya ◽  
Ann L. Beyer ◽  
David A. Schneider

Spt6 (suppressor ofTy6) has many roles in transcription initiation and elongation by RNA polymerase (Pol) II. These effects are mediated through interactions with histones, transcription factors, and the RNA polymerase. Two lines of evidence suggest that Spt6 also plays a role in rRNA synthesis. First, Spt6 physically associates with a Pol I subunit (Rpa43). Second, Spt6 interacts physically and genetically with Spt4/5, which directly affects Pol I transcription. Utilizing a temperature-sensitive allele,spt6-1004, we show that Spt6 is essential for Pol I occupancy of the ribosomal DNA (rDNA) and rRNA synthesis. Our data demonstrate that protein levels of an essential Pol I initiation factor, Rrn3, are reduced when Spt6 is inactivated, leading to low levels of Pol I-Rrn3 complex. Overexpression ofRRN3rescues Pol I-Rrn3 complex formation; however, rRNA synthesis is not restored. These data suggest that Spt6 is involved in either recruiting the Pol I-Rrn3 complex to the rDNA or stabilizing the preinitiation complex. The findings presented here identify an unexpected, essential role for Spt6 in synthesis of rRNA.


2015 ◽  
Vol 71 (9) ◽  
pp. 1850-1855 ◽  
Author(s):  
Dirk Kostrewa ◽  
Claus-D. Kuhn ◽  
Christoph Engel ◽  
Patrick Cramer

RNA polymerase I (Pol I) is the central, 14-subunit enzyme that synthesizes the ribosomal RNA (rRNA) precursor in eukaryotic cells. The recent crystal structure of Pol I at 2.8 Å resolution revealed two novel elements: the `expander' in the active-centre cleft and the `connector' that mediates Pol I dimerization [Engelet al.(2013),Nature (London),502, 650–655]. Here, a Pol I structure in an alternative crystal form that was solved by molecular replacement using the original atomic Pol I structure is reported. The resulting alternative structure lacks the expander but still shows an expanded active-centre cleft. The neighbouring Pol I monomers form a homodimer with a relative orientation distinct from that observed previously, establishing the connector as a hinge between Pol I monomers.


2020 ◽  
Vol 48 (5) ◽  
pp. 1917-1927
Author(s):  
Bruce A. Knutson ◽  
Rachel McNamar ◽  
Lawrence I. Rothblum

RNA polymerase I (Pol I) is the most specialized eukaryotic Pol. It is only responsible for the synthesis of pre-ribosomal RNA (rRNA), the precursor of 18S, 5.8S and 28S rRNA, the most abundant cellular RNA types. Aberrant Pol I transcription is observed in a wide variety of cancers and its down-regulation is associated with several genetic disorders. The regulation and mechanism of Pol I transcription is increasing in clarity given the numerous high-resolution Pol I structures that have helped bridge seminal genetic and biochemical findings in the field. Here, we review the multifunctional roles of an important TFIIF- and TFIIE-like subcomplex composed of the Pol I subunits A34.5 and A49 in yeast, and PAF49 and PAF53 in mammals. Recent analyses have revealed a dynamic interplay between this subcomplex at nearly every step of the Pol I transcription cycle in addition to new roles in chromatin traversal and the existence of a new helix-turn-helix (HTH) within the A49/PAF53 linker domain that expands its dynamic functions during the Pol I transcription process.


NAR Cancer ◽  
2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Jean-Clément Mars ◽  
Michel G Tremblay ◽  
Mélissa Valere ◽  
Dany S Sibai ◽  
Marianne Sabourin-Felix ◽  
...  

Abstract In the search for drugs to effectively treat cancer, the last 10 years have seen a resurgence of interest in targeting ribosome biogenesis. CX-5461 is a potential inhibitor of ribosomal RNA synthesis that is now showing promise in phase I trials as a chemotherapeutic agent for a range of malignancies. Here, we show that CX-5461 irreversibly inhibits ribosomal RNA transcription by arresting RNA polymerase I (RPI/Pol1/PolR1) in a transcription initiation complex. CX-5461 does not achieve this by preventing formation of the pre-initiation complex nor does it affect the promoter recruitment of the SL1 TBP complex or the HMGB-box upstream binding factor (UBF/UBTF). CX-5461 also does not prevent the subsequent recruitment of the initiation-competent RPI–Rrn3 complex. Rather, CX-5461 blocks promoter release of RPI–Rrn3, which remains irreversibly locked in the pre-initiation complex even after extensive drug removal. Unexpectedly, this results in an unproductive mode of RPI recruitment that correlates with the onset of nucleolar stress, inhibition of DNA replication, genome-wide DNA damage and cellular senescence. Our data demonstrate that the cytotoxicity of CX-5461 is at least in part the result of an irreversible inhibition of RPI transcription initiation and hence are of direct relevance to the design of improved strategies of chemotherapy.


2018 ◽  
Author(s):  
Tommy Darrière ◽  
Michael Pilsl ◽  
Marie-Kerguelen Sarthou ◽  
Adrien Chauvier ◽  
Titouan Genty ◽  
...  

AbstractMost transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that wild-type RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I.Author summaryThe nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yan Han ◽  
Chunli Yan ◽  
Thi Hoang Duong Nguyen ◽  
Ashleigh J Jackobel ◽  
Ivaylo Ivanov ◽  
...  

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from −27 to −16. Core Factor’s intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Benjamin Albert ◽  
Jorge Perez-Fernandez ◽  
Isabelle Léger-Silvestre ◽  
Olivier Gadal

Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35–47S) can be achieved by up to 150 RNA polymerase I (Pol I) enzymes simultaneously transcribing each rRNA gene. In this paper, we present recent advances made in understanding the regulatory mechanisms that control elongation. Built-in Pol I elongation factors, such as Rpa34/Rpa49 in budding yeast and PAF53/CAST in humans, are instrumental to the extremely high rate of rRNA production per gene. rRNA elongation mechanisms are intrinsically linked to chromatin structure and to the higher-order organization of the rRNA genes (rDNA). Factors such as Hmo1 in yeast and UBF1 in humans are key players in rDNA chromatin structure in vivo. Finally, elongation factors known to regulate messengers RNA production by RNA polymerase II are also involved in rRNA production and work cooperatively with Rpa49 in vivo.


Sign in / Sign up

Export Citation Format

Share Document