scholarly journals Author response: Origin and role of the cerebrospinal fluid bidirectional flow in the central canal

2019 ◽  
Author(s):  
Olivier Thouvenin ◽  
Ludovic Keiser ◽  
Yasmine Cantaut-Belarif ◽  
Martin Carbo-Tano ◽  
Frederik Verweij ◽  
...  
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Olivier Thouvenin ◽  
Ludovic Keiser ◽  
Yasmine Cantaut-Belarif ◽  
Martin Carbo-Tano ◽  
Frederik Verweij ◽  
...  

Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.


2019 ◽  
Author(s):  
Adeline Orts-Del’Immagine ◽  
Yasmine Cantaut-Belarif ◽  
Olivier Thouvenin ◽  
Julian Roussel ◽  
Asha Baskaran ◽  
...  

SummaryRecent evidence indicate active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending while ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal using electron microscopy in zebrafish larvae that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the Reissner fiber in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Since ciliary defects alter the formation of the Reissner fiber, we investigated whether the Reissner fiber contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the Reissner fiber per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the Reissner fiber to detect spinal curvature in the vertebrate spinal cord.Abstract FigureeToCThe role of the Reissner fiber, a long extracellular thread running in the cerebrospinal fluid (CSF), has been since its discovery in 1860 a subject of debate. Orts-Del’Immagine et al. report that the Reissner fiber plays a critical role in the detection of spinal curvature by sensory neurons contacting the CSF.HighlightsSince its discovery, the role of the Reissner fiber has long been a subject of debateMechanoreception in CSF-contacting neurons (CSF-cNs) in vivo requires the Reissner fiberCSF-cN apical extension is in close vicinity of the Reissner fiberCSF-cNs and the Reissner fiber form in vivo a sensory organ detecting spinal curvature


2019 ◽  
Author(s):  
Olivier Thouvenin ◽  
Ludovic Keiser ◽  
Yasmine Cantaut-Belarif ◽  
Martin Carbo-Tano ◽  
Frederik Verweij ◽  
...  

AbstractThe circulation of cerebrospinal fluid (CSF) plays pivotal roles for body axis formation and brain development. During embryogenesis, CSF is rich in particles and proteins and flows bidirectionally in the central canal. The origins of bidirectional flow and its impact on development are unknown. Experiments combined with modeling and simulations demonstrate that the bidirectionality of CSF flow is generated locally by caudally-polarized motile cilia confined to the ventral wall of the central canal. Such active bidirectional flow of the CSF accelerates the long-range transport of particles propagating rostrally and caudally. In addition, spontaneous muscle contractions increase local CSF flow and consequently enhance long-range transport of extracellular lipidic particles. Focal ablation of the channel connecting brain ventricles to the central canal reduces embryo length, indicating that long-range transport contributes to embryonic growth. Our study also demonstrates that at this early stage, motile cilia ensure the proper formation of the central canal.


2019 ◽  
Author(s):  
Jordan N Norwood ◽  
Qingguang Zhang ◽  
David Card ◽  
Amanda Craine ◽  
Timothy M Ryan ◽  
...  

Author(s):  
Tomoko Yamaguchi ◽  
Yumi Ikeda ◽  
Katsuhisa Tashiro ◽  
Yasuyuki Ohkawa ◽  
Kenji Kawabata

1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


2020 ◽  
Author(s):  
Jiro Ichikawa ◽  
Takashi Ando ◽  
Tomonori Kawasaki ◽  
Tomoyuki Sasaki ◽  
Toshiaki Shirai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document