scholarly journals Decision letter: IFI16, a nuclear innate immune DNA sensor, mediates epigenetic silencing of herpesvirus genomes by its association with H3K9 methyltransferases SUV39H1 and GLP

2019 ◽  
Author(s):  
Ravi Mahalingam
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Arunava Roy ◽  
Anandita Ghosh ◽  
Binod Kumar ◽  
Bala Chandran

IFI16, an innate immune DNA sensor, recognizes the nuclear episomal herpes viral genomes and induces the inflammasome and interferon-β responses. IFI16 also regulates cellular transcription and act as a DNA virus restriction factor. IFI16 knockdown disrupted the latency of Kaposi’s sarcoma associated herpesvirus (KSHV) and induced lytic transcripts. However, the mechanism of IFI16’s transcription regulation is unknown. Here, we show that IFI16 is in complex with the H3K9 methyltransferase SUV39H1 and GLP and recruits them to the KSHV genome during de novo infection and latency. The resulting depositions of H3K9me2/me3 serve as a docking site for the heterochromatin-inducing HP1α protein leading into the IFI16-dependent epigenetic modifications and silencing of KSHV lytic genes. These studies suggest that IFI16’s interaction with H3K9MTases is one of the potential mechanisms by which IFI16 regulates transcription and establish an important paradigm of an innate immune sensor’s involvement in epigenetic silencing of foreign DNA.


2019 ◽  
Vol 12 (581) ◽  
pp. eaax3521 ◽  
Author(s):  
Nelson O. Gekara ◽  
Hui Jiang

Cyclic cGMP-AMP synthase (cGAS) alerts the innate immune system to the presence of foreign or damaged self-DNA inside the cell and is critical for the outcome of infections, inflammatory diseases, and cancer. Two studies now demonstrate that cGAS activation is regulated by differential subcellular localization through its non-enzymatic, N-terminal domain.


Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 821-834 ◽  
Author(s):  
Keqin Yan ◽  
Dingqing Feng ◽  
Jing Liang ◽  
Qing Wang ◽  
Lin Deng ◽  
...  

Viral infections of the ovary may perturb ovarian functions. However, the mechanisms underlying innate immune responses in the ovary are poorly understood. The present study demonstrates that cytosolic viral DNA sensor signaling initiates the innate immune response in mouse ovarian granulosa cells and affects endocrine function. The cytosolic DNA sensors p204 and cGAS and their common signaling adaptor stimulator of interferon (IFN) genes (STING) were constitutively expressed in granulosa cells. Transfection with VACV70, a synthetic vaccinia virus (VACV) DNA analog, induced the expression of type I interferons (IFNA/B) and major inflammatory cytokines (TNFA and IL6) through IRF3 and NF-κB activation respectively. Moreover, several IFN-inducible antiviral proteins, including 2′,5′-oligoadenylate synthetase, IFN-stimulating gene 15 and Mx GTPase 1, were also induced by VACV70 transfection. The innate immune responses in granulosa cells were significantly reduced by the transfection of specific small-interfering RNAs targeting p204, cGas or Sting. Notably, the VACV70-triggered innate immune responses affected steroidogenesis in vivo and in vitro. The data presented in this study describe the mechanism underlying ovarian immune responses to viral infection.


Cell Reports ◽  
2013 ◽  
Vol 3 (5) ◽  
pp. 1355-1361 ◽  
Author(s):  
Elie J. Diner ◽  
Dara L. Burdette ◽  
Stephen C. Wilson ◽  
Kathryn M. Monroe ◽  
Colleen A. Kellenberger ◽  
...  

Nature ◽  
2007 ◽  
Vol 448 (7152) ◽  
pp. 501-505 ◽  
Author(s):  
Akinori Takaoka ◽  
ZhiChao Wang ◽  
Myoung Kwon Choi ◽  
Hideyuki Yanai ◽  
Hideo Negishi ◽  
...  

2018 ◽  
Vol 11 (547) ◽  
pp. eaav3302
Author(s):  
Annalisa M. VanHook

An HSV-1 enzyme represses innate immune responses by deamidating the cytosolic DNA sensor cGAS.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lavinia Rech ◽  
Peter P. Rainer

Inflammation plays a central role in cardiovascular diseases (CVD). One pathway under investigation is the innate immune DNA sensor cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING). cGAS-STING upregulates type I interferons in response to pathogens. Recent studies show that also self-DNA may activate cGAS-STING, for instance, DNA released from nuclei or mitochondria during obesity or myocardial infarction. Here, we focus on emerging evidence describing the interaction of cGAS-STING with cardiovascular risk factors and disease. We also touch on translational therapeutic opportunities and potential further investigations.


Sign in / Sign up

Export Citation Format

Share Document