scholarly journals Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Janus RL Kobbersmed ◽  
Andreas T Grasskamp ◽  
Meida Jusyte ◽  
Mathias A Böhme ◽  
Susanne Ditlevsen ◽  
...  

Chemical synaptic transmission relies on the Ca2+-induced fusion of transmitter-laden vesicles whose coupling distance to Ca2+ channels determines synaptic release probability and short-term plasticity, the facilitation or depression of repetitive responses. Here, using electron- and super-resolution microscopy at the Drosophila neuromuscular junction we quantitatively map vesicle:Ca2+ channel coupling distances. These are very heterogeneous, resulting in a broad spectrum of vesicular release probabilities within synapses. Stochastic simulations of transmitter release from vesicles placed according to this distribution revealed strong constraints on short-term plasticity; particularly facilitation was difficult to achieve. We show that postulated facilitation mechanisms operating via activity-dependent changes of vesicular release probability (e.g. by a facilitation fusion sensor) generate too little facilitation and too much variance. In contrast, Ca2+-dependent mechanisms rapidly increasing the number of releasable vesicles reliably reproduce short-term plasticity and variance of synaptic responses. We propose activity-dependent inhibition of vesicle un-priming or release site activation as novel facilitation mechanisms.

2021 ◽  
Vol 118 (3) ◽  
pp. e2022551118
Author(s):  
Ermis Pofantis ◽  
Erwin Neher ◽  
Thomas Dresbach

Neurotransmitter release occurs by regulated exocytosis from synaptic vesicles (SVs). Evolutionarily conserved proteins mediate the essential aspects of this process, including the membrane fusion step and priming steps that make SVs release-competent. Unlike the proteins constituting the core fusion machinery, the SV protein Mover does not occur in all species and all synapses. Its restricted expression suggests that Mover may modulate basic aspects of transmitter release and short-term plasticity. To test this hypothesis, we analyzed synaptic transmission electrophysiologically at the mouse calyx of Held synapse in slices obtained from wild-type mice and mice lacking Mover. Spontaneous transmission was unaffected, indicating that the basic release machinery works in the absence of Mover. Evoked release and vesicular release probability were slightly reduced, and the paired pulse ratio was increased in Mover knockout mice. To explore whether Mover’s role is restricted to certain subpools of SVs, we analyzed our data in terms of two models of priming. A model assuming two SV pools in parallel showed a reduced release probability of so-called “superprimed vesicles” while “normally primed” ones were unaffected. For the second model, which holds that vesicles transit sequentially from a loosely docked state to a tightly docked state before exocytosis, we found that knocking out Mover selectively decreased the release probability of tight state vesicles. These results indicate that Mover regulates a subclass of primed SVs in the mouse calyx of Held.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Sumiko Mochida

Synaptic efficacy is remodeled by neuronal firing activity at the presynaptic terminal. Presynaptic activity-dependent changes in transmitter release induce postsynaptic plasticity, including morphological change in spine, gene transcription, and protein synthesis and trafficking. The presynaptic transmitter release is triggered and regulated by Ca2+, which enters through voltage-gated Ca2+ (CaV) channels and diffuses into the presynaptic terminal accompanying action potential firings. Residual Ca2+ is sensed by Ca2+-binding proteins, among other potential actions, it mediates time- and space-dependent synaptic facilitation and depression via effects on CaV2 channel gating and vesicle replenishment in the readily releasable pool (RRP). Calmodulin, a Ca2+-sensor protein with an EF-hand motif that binds Ca2+, interacts with CaV2 channels and autoreceptors in modulation of SNARE-mediated exocytosis.


2018 ◽  
Author(s):  
Nishant Singh ◽  
Thomas Bartol ◽  
Herbert Levine ◽  
Terrence Sejnowski ◽  
Suhita Nadkarni

Short-term plasticity (STP) of the presynaptic terminal maintains a brief history of activity experienced by the synapse that may otherwise remain unseen by the postsynaptic neuron. These synaptic changes are primarily regulated by calcium dynamics in the presynaptic terminal. A rapid increase in intracellular calcium is initiated by the opening of voltage-dependent calcium channels in response to depolarization, the main source of calcium required for vesicle fusion. Separately, electron-microscopic studies of hippocampal CA3-CA1 synapses reveal the strong presence of endoplasmic reticulum (ER) in all presynaptic terminals. However, the precise role of the ER in modifying STP at the presynaptic terminal remains unexplored. To investigate the contribution of ER in modulating calcium dynamics in small hippocampal boutons, we performed in silico experiments in a physiologically-realistic canonical synaptic geometry based on reconstructions of CA3-CA1 Schaffer collaterals in the rat hippocampus. The model predicts that presynaptic calcium stores are critical in generating the observed paired-pulse ratio (PPR) of normal CA3-CA1 synapses. In control synapses with intact ER, SERCA pumps act as additional calcium buffers, lowering the intrinsic release probability of vesicle release and increasing PPR. In addition, the presence of ER allows ongoing activity to trigger calcium influx from the presynaptic ER via ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs). Intracellular stores and their associated machinery also allows a synapse with a low release probability to operate more reliably due to attenuation of calcium fluctuations. Finally, blocking ER activity in the presynaptic terminal mimics the pathological state of a low facilitating synapse characterized in animal models of Alzheimer’s disease, and underscores the critical role played by presynaptic stores in normal function.


2019 ◽  
Author(s):  
Chia-En Wong ◽  
Kuen-Jer Tsai

AbstractLocal protein synthesis and mRNA metabolism mediated by mRNP granules in the dendrites and the postsynaptic compartments is essential for synaptic remodelling and plasticity in the neuronal cells. Misregulation in these processes caused by TDP-43 proteinopathy lead to neurodegenerative diseases such frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Using biochemical analysis and imaging techniques including super-resolution microscopy, we provide evidences for the first time of the postsynaptic localization of TDP-43 in the mammalian synapses; and we show TDP-43 as a component of neuronal mRNP granules. With activity stimulation and different molecular approaches, we further demonstrate activity-dependent mRNP granule dynamics involving disassembly of mRNP granules, release of mRNAs, and activation of local protein translation as long as impairments in models of TDP-43 proteinopathy. This study elucidates the interplay between TDP-43 and neuronal mRNP granules in normal physiology and TDP-43 proteinopathy in regulation of local protein translation and mRNA metabolism in the postsynaptic compartment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gülçin Vardar ◽  
Andrea Salazar-Lázaro ◽  
Marisa M Brockmann ◽  
Marion Weber-Boyvat ◽  
Sina Zobel ◽  
...  

Syntaxin-1 (STX1) and Munc18-1 are two requisite components of synaptic vesicular release machinery, so much so synaptic transmission cannot proceed in their absence. They form a tight complex through two major binding modes: through STX1's N-peptide and through STX's closed conformation driven by its Habc- domain. However, physiological roles of these two reportedly different binding modes in synapses are still controversial. Here we characterized the roles of STX1's N-peptide, Habc-domain, and open conformation with and without N-peptide deletion using our STX1-null mouse model system and exogenous reintroduction of STX1A mutants. We show, on the contrary to the general view, that the Habc-domain is absolutely required and N-peptide is dispensable for synaptic transmission. However, STX1A's N-peptide plays a regulatory role, particularly in the Ca2+-sensitivity and the short-term plasticity of vesicular release, whereas STX1's open-conformation governs the vesicle fusogenicity. Strikingly, we also show neurotransmitter release still proceeds when the two interaction modes between STX1A and Munc18-1 are presumably intervened, necessitating a refinement of the conceptualization of STX1A-Munc18-1 interaction.


2002 ◽  
Vol 88 (5) ◽  
pp. 2490-2500 ◽  
Author(s):  
Rossana Scuri ◽  
Riccardo Mozzachiodi ◽  
Marcello Brunelli

We identified a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) sensory neurons of the leech Hirudo medicinalis. Repetitive intracellular stimulation with 30 trains of depolarizing impulses at 15-s inter-stimulus interval (ISI) led to an increase of the AHP amplitude (∼60% of the control). The enhancement of AHP lasted for ≥15 min. The AHP increase was also elicited when a T neuron was activated by repetitive stimulation of its receptive field. The ISI was a critical parameter for the induction and maintenance of AHP enhancement. ISI duration had to fit within a time window with the upper limit of 20 s to make the training effective to induce an enhancement of the AHP amplitude. After recovery from potentiation, AHP amplitude could be enhanced once again by delivering another training session. The increase of AHP amplitude persisted in high Mg2+ saline, suggesting an intrinsic cellular mechanism for its induction. Previous investigations reported that AHP of leech T neurons was mainly due to the activity of the Na+/K+ ATPase and to a Ca2+-dependent K+ current ( I K/Ca). In addition, it has been demonstrated that serotonin (5HT) reduces AHP amplitude through the inhibition of the Na+/K+ATPase. By blocking the I K/Ca with pharmacological agents, such as cadmium and apamin, we still observed an increase of the AHP amplitude after repetitive stimulation, whereas 5HT application completely inhibited the AHP increment. These data indicate that the Na+/K+ATPase is involved in the induction and maintenance of the AHP increase after repetitive stimulation. Moreover, the AHP increase was affected by the level of serotonin in the CNS. Finally, the increase of the AHP amplitude produced a lasting depression of the synaptic connection between two T neurons, suggesting that this activity-dependent phenomenon might be involved in short-term plasticity associated with learning processes.


2003 ◽  
Vol 89 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Darrin H. Brager ◽  
Scott M. Thompson

High-frequency stimulation results in a transient, presynaptically mediated decrease in synaptic efficacy called short-term depression (STD). Stimulation of Schaffer-collateral axons at 10 Hz for 5 s resulted in approximately 75% depression of excitatory postsynaptic current (EPSC) slope recorded from CA1 cells in rat organotypic slice cultures. An adenosine A1 receptor antagonist decreased the magnitude of STD elicited with 10-Hz stimulation by approximately 30%. The A1 receptor antagonist had no effect on STD elicited with 3-Hz stimulation. The activation of A1 receptors during 10-Hz stimulation was not due to the extracellular conversion of released ATP to adenosine, because block of 5′-ectonucleotidases did not significantly affect STD. The adenosine transport inhibitor dipyridamole did not reduce STD, indicating that adenosine was not released by facilitated transport. We conclude that 10-Hz, but not 3-Hz, stimulation causes the vesicular release of adenosine and the rapid (<3 s) activation of presynaptic inhibitory A1 receptors, which account for approximately 40% of homosynaptic EPSC depression.


Sign in / Sign up

Export Citation Format

Share Document