scholarly journals Recruitment of mRNAs to P granules by condensation with intrinsically-disordered proteins

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chih-Yung S Lee ◽  
Andrea Putnam ◽  
Tu Lu ◽  
ShuaiXin He ◽  
John Paul T Ouyang ◽  
...  

RNA granules are protein/RNA condensates. How specific mRNAs are recruited to cytoplasmic RNA granules is not known. Here, we characterize the transcriptome and assembly of P granules, RNA granules in the C. elegans germ plasm. We find that P granules recruit mRNAs by condensation with the disordered protein MEG-3. MEG-3 traps mRNAs into non-dynamic condensates in vitro and binds to ~500 mRNAs in vivo in a sequence-independent manner that favors embryonic mRNAs with low ribosome coverage. Translational stress causes additional mRNAs to localize to P granules and translational activation correlates with P granule exit for two mRNAs coding for germ cell fate regulators. Localization to P granules is not required for translational repression but is required to enrich mRNAs in the germ lineage for robust germline development. Our observations reveal similarities between P granules and stress granules and identify intrinsically-disordered proteins as drivers of RNA condensation during P granule assembly.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Jennifer T Wang ◽  
Jarrett Smith ◽  
Bi-Chang Chen ◽  
Helen Schmidt ◽  
Dominique Rasoloson ◽  
...  

RNA granules have been likened to liquid droplets whose dynamics depend on the controlled dissolution and condensation of internal components. The molecules and reactions that drive these dynamics in vivo are not well understood. In this study, we present evidence that a group of intrinsically disordered, serine-rich proteins regulate the dynamics of P granules in C. elegans embryos. The MEG (maternal-effect germline defective) proteins are germ plasm components that are required redundantly for fertility. We demonstrate that MEG-1 and MEG-3 are substrates of the kinase MBK-2/DYRK and the phosphatase PP2APPTR−½. Phosphorylation of the MEGs promotes granule disassembly and dephosphorylation promotes granule assembly. Using lattice light sheet microscopy on live embryos, we show that GFP-tagged MEG-3 localizes to a dynamic domain that surrounds and penetrates each granule. We conclude that, despite their liquid-like behavior, P granules are non-homogeneous structures whose assembly in embryos is regulated by phosphorylation.


2019 ◽  
Author(s):  
Chih-Yung S. Lee ◽  
Andrea Putnam ◽  
Tu Lu ◽  
Shuaixin He ◽  
John Paul T. Ouyang ◽  
...  

AbstractAnimals with germ plasm assemble cytoplasmic RNA granules (germ granules) that segregate with the embryonic germ lineage. How germ granules assemble and recruit RNA is not well understood. Here we characterize the assembly and RNA composition of the germ (P) granules of C. elegans. ∼500 maternal mRNAs are recruited into P granules by a sequence independent mechanism that favors mRNAs with low ribosome coverage. Translational activation correlates temporally with P granule exit for two mRNAs that code for germ cell fate regulators. mRNAs are recruited into the granules by MEG-3, an intrinsically disordered protein that condenses with RNA to form nanoscale gels. Our observations reveal parallels between germ granules and stress granules and suggest that cytoplasmic RNA granules are reversible super-assemblies of nanoscale RNA-protein gel condensates.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Andrei Vovk ◽  
Chad Gu ◽  
Michael G Opferman ◽  
Larisa E Kapinos ◽  
Roderick YH Lim ◽  
...  

Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function.


Author(s):  
Evert Njomen ◽  
Theresa A. Lansdell ◽  
Allison Vanecek ◽  
Vanessa Benham ◽  
Matt P. Bernard ◽  
...  

SUMMARYEnhancing proteasome activity is a potential new therapeutic strategy to prevent the accumulation of aberrant high levels of protein that drive the pathogenesis of many diseases. Herein, we examine the use of small molecules to activate the 20S proteasome to reduce aberrant signaling by the undruggable oncoprotein c-MYC, to treat c-MYC driven oncogenesis. Overexpression of c-MYC is found in more than 50% of all human cancer but remains undruggable because of its highly dynamic intrinsically disordered 3-D conformation, which renders traditional therapeutic strategies largely ineffective. We demonstrate herein that small molecule activation of the 20S proteasome targets dysregulated intrinsically disordered proteins (IDPs), including c-MYC, and reduces cancer growth in vitro and in vivo models of multiple myeloma, and is even effective in bortezomib resistant cells and unresponsive patient samples. Genomic analysis of various cancer pathways showed that proteasome activation results in downregulation of many c-MYC target genes. Moreover, proteasome enhancement was well tolerated in mice and dogs. These data support the therapeutic potential of 20S proteasome activation in targeting IDP-driven proteotoxic disorders, including cancer, and demonstrate that this new therapeutic strategy is well tolerated in vivo.


2020 ◽  
Vol 117 (21) ◽  
pp. 11421-11431 ◽  
Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1856
Author(s):  
Nikoletta Murvai ◽  
Lajos Kalmar ◽  
Bianka Szalaine Agoston ◽  
Beata Szabo ◽  
Agnes Tantos ◽  
...  

Details of the functional mechanisms of intrinsically disordered proteins (IDPs) in living cells is an area not frequently investigated. Here, we dissect the molecular mechanism of action of an IDP in cells by detailed structural analyses based on an in-cell nuclear magnetic resonance experiment. We show that the ID stress protein (IDSP) A. thaliana Early Response to Dehydration (ERD14) is capable of protecting E. coli cells under heat stress. The overexpression of ERD14 increases the viability of E. coli cells from 38.9% to 73.9% following heat stress (50 °C × 15 min). We also provide evidence that the protection is mainly achieved by protecting the proteome of the cells. In-cell NMR experiments performed in E. coli cells show that the protective activity is associated with a largely disordered structural state with conserved, short sequence motifs (K- and H-segments), which transiently sample helical conformations in vitro and engage in partner binding in vivo. Other regions of the protein, such as its S segment and its regions linking and flanking the binding motifs, remain unbound and disordered in the cell. Our data suggest that the cellular function of ERD14 is compatible with its residual structural disorder in vivo.


2019 ◽  
Vol 30 (6) ◽  
pp. 737-741 ◽  
Author(s):  
Douglas Koshland ◽  
Hugo Tapia

Climate change has accentuated the importance of understanding how organisms respond to stresses imposed by changes to their environment, like water availability. Unusual organisms, called anhydrobiotes, can survive loss of almost all intracellular water. Desiccation tolerance of anhydrobiotes provides an unusual window to study the stresses and stress response imposed by water loss. Because of the myriad of stresses that could be induced by water loss, desiccation tolerance seemed likely to require many established stress effectors. The sugar trehalose and hydrophilins (small intrinsically disordered proteins) had also been proposed as stress effectors against desiccation because they were found in nearly all anhydrobiotes, and could mitigate desiccation-induced damage to model proteins and membranes in vitro. Here, we summarize in vivo studies of desiccation tolerance in worms, yeast, and tardigrades. These studies demonstrate the remarkable potency of trehalose and a subset of hydrophilins as the major stress effectors of desiccation tolerance. They act, at least in part, by limiting in vivo protein aggregation and loss of membrane integrity. The apparent specialization of individual hydrophilins for desiccation tolerance suggests that other hydrophilins may have distinct roles in mitigating additional cellular stresses, thereby defining a potentially new functionally diverse set of stress effectors.


2017 ◽  
Author(s):  
Assaf Biran ◽  
Nadav Myers ◽  
Julia Adler ◽  
Karin Broennimann ◽  
Nina Reuven ◽  
...  

AbstractDegradation of intrinsically disordered proteins (IDPs) by the 20S proteasome, unlike ubiquitin-dependent 26S proteasomal degradation, does not require proteasomal targeting by polyubiquitin. However, how these proteins are recognized by the proteasome was unknown. We report here on a mechanism of 20S proteasome targeting. Analysis of protein interactome datasets revealed that the proteasome subunit PSMA3 interacts with many IDPs. By employing in vivo and cell-free experiments we demonstrated that the PSMA3 C-terminus binds p21, c-Fos and p53, all IDPs and 20S proteasome substrates. A 69 amino-acids long fragment is autonomously functional in interacting with IDP substrates. Remarkably, this fragment in isolation blocks the degradation of a large number of IDPs in vitro and increases the half-life of proteins in vivo. We propose a model whereby the PSMA3 C-terminal region plays a role of substrate receptor in the process of proteasomal degradation of many IDPs.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jarrett Smith ◽  
Deepika Calidas ◽  
Helen Schmidt ◽  
Tu Lu ◽  
Dominique Rasoloson ◽  
...  

RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced phase separation of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and phase separates with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 phase separation in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 phase separation to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced phase separation of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time.


2017 ◽  
Vol 16 ◽  
pp. 117693511769940 ◽  
Author(s):  
Deepak Kumar ◽  
Nitin Sharma ◽  
Rajanish Giri

The concept of protein intrinsic disorder has taken the driving seat to understand regulatory proteins in general. Reports suggest that in mammals nearly 75% of signalling proteins contain long disordered regions with greater than 30 amino acid residues. Therefore, intrinsically disordered proteins (IDPs) have been implicated in several human diseases and should be considered as potential novel drug targets. Moreover, intrinsic disorder provides a huge multifunctional capability to hub proteins such as c-Myc and p53. c-Myc is the hot spot for understanding and developing therapeutics against cancers and cancer stem cells. Our past understanding is mainly based on in vitro and in vivo experiments conducted using c-Myc as whole protein. Using the reductionist approach, c-Myc oncoprotein has been divided into structured and disordered domains. A wealth of data is available dealing with the structured perspectives of c-Myc, but understanding c-Myc in terms of disordered domains has just begun. Disorderness provides enormous flexibility to proteins in general for binding to numerous partners. Here, we have reviewed the current progress on understanding c-Myc using the emerging concept of IDPs.


Sign in / Sign up

Export Citation Format

Share Document