scholarly journals Nuclear receptor Ftz-f1 promotes follicle maturation and ovulation partly via bHLH/PAS transcription factor Sim

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Elizabeth M Knapp ◽  
Wei Li ◽  
Vijender Singh ◽  
Jianjun Sun

The NR5A-family nuclear receptors are highly conserved and function within the somatic follicle cells of the ovary to regulate folliculogenesis and ovulation in mammals; however, their roles in Drosophila ovaries are largely unknown. Here, we discover that Ftz-f1, one of the NR5A nuclear receptors in Drosophila, is transiently induced in follicle cells in late stages of oogenesis via ecdysteroid signaling. Genetic disruption of Ftz-f1 expression prevents follicle cell differentiation into the final maturation stage, which leads to anovulation. In addition, we demonstrate that the bHLH/PAS transcription factor Single-minded (Sim) acts as a direct target of Ftz-f1 to promote follicle cell differentiation/maturation and that Ftz-f1’s role in regulating Sim expression and follicle cell differentiation can be replaced by its mouse homolog steroidogenic factor 1 (mSF-1). Our work provides new insight into the regulation of follicle maturation in Drosophila and the conserved role of NR5A nuclear receptors in regulating folliculogenesis and ovulation.

2014 ◽  
Vol 127 (7) ◽  
pp. 1428-1440 ◽  
Author(s):  
F. Fang ◽  
S. M. Wasserman ◽  
J. Torres-Vazquez ◽  
B. Weinstein ◽  
F. Cao ◽  
...  

2012 ◽  
Vol 197 (4) ◽  
pp. 487-497 ◽  
Author(s):  
Kasturi Mitra ◽  
Richa Rikhy ◽  
Mary Lilly ◽  
Jennifer Lippincott-Schwartz

Exit from the cell cycle is essential for cells to initiate a terminal differentiation program during development, but what controls this transition is incompletely understood. In this paper, we demonstrate a regulatory link between mitochondrial fission activity and cell cycle exit in follicle cell layer development during Drosophila melanogaster oogenesis. Posterior-localized clonal cells in the follicle cell layer of developing ovarioles with down-regulated expression of the major mitochondrial fission protein DRP1 had mitochondrial elements extensively fused instead of being dispersed. These cells did not exit the cell cycle. Instead, they excessively proliferated, failed to activate Notch for differentiation, and exhibited downstream developmental defects. Reintroduction of mitochondrial fission activity or inhibition of the mitochondrial fusion protein Marf-1 in posterior-localized DRP1-null clones reversed the block in Notch-dependent differentiation. When DRP1-driven mitochondrial fission activity was unopposed by fusion activity in Marf-1–depleted clones, premature cell differentiation of follicle cells occurred in mitotic stages. Thus, DRP1-dependent mitochondrial fission activity is a novel regulator of the onset of follicle cell differentiation during Drosophila oogenesis.


2021 ◽  
Vol 6 (57) ◽  
pp. eabc9801
Author(s):  
Tim D. Holmes ◽  
Ram Vinay Pandey ◽  
Eric Y. Helm ◽  
Heinrich Schlums ◽  
Hongya Han ◽  
...  

Epigenetic landscapes can provide insight into regulation of gene expression and cellular diversity. Here, we examined the transcriptional and epigenetic profiles of seven human blood natural killer (NK) cell populations, including adaptive NK cells. The BCL11B gene, encoding a transcription factor (TF) essential for T cell development and function, was the most extensively regulated, with expression increasing throughout NK cell differentiation. Several Bcl11b-regulated genes associated with T cell signaling were specifically expressed in adaptive NK cell subsets. Regulatory networks revealed reciprocal regulation at distinct stages of NK cell differentiation, with Bcl11b repressing RUNX2 and ZBTB16 in canonical and adaptive NK cells, respectively. A critical role for Bcl11b in driving NK cell differentiation was corroborated in BCL11B-mutated patients and by ectopic Bcl11b expression. Moreover, Bcl11b was required for adaptive NK cell responses in a murine cytomegalovirus model, supporting expansion of these cells. Together, we define the TF regulatory circuitry of human NK cells and uncover a critical role for Bcl11b in promoting NK cell differentiation and function.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 3745-3754 ◽  
Author(s):  
A.M. Morimoto ◽  
K.C. Jordan ◽  
K. Tietze ◽  
J.S. Britton ◽  
E.M. O'Neill ◽  
...  

Spatially regulated activation of the Drosophila epidermal growth factor (EGF) receptor by its ligand, Gurken, is required for establishment of the dorsal/ventral axis of the oocyte and embryo. During mid-oogenesis, Gurken is concentrated at the dorsal-anterior of the oocyte and is thought to activate the EGF receptor pathway in adjacent follicle cells. In response to this signal, dorsal follicle cell fate is determined. These cells further differentiate into either appendage-producing or midline cells, resulting in patterning in the dorsal follicle cell layer. We show here that Pointed, an ETS transcription factor, is required in dorsal follicle cells for this patterning. Loss of pointed results in the loss of midline cells and an excess of appendage-forming cells, a phenotype associated with overactivation of the EGF receptor pathway in the dorsal region. Overexpression of pointed leads to a phenotype similar to that generated by loss of the EGF receptor pathway. This suggests that Pointed normally down-regulates EGF receptor signaling in the midline to generate patterning in the dorsal region. Interestingly, pointed expression is induced by the EGF receptor pathway. These data indicate a novel antagonistic function for Pointed in oogenesis; in response to activation of the EGF receptor, pointed is expressed and negatively regulates the EGF receptor pathway, possibly by integrating information from a second pathway.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 303-LB
Author(s):  
NAJWA A. AL-JAHDHAMI ◽  
SCOTT J. ANDERSON ◽  
ALI ALDIBBIAT ◽  
JAMES A. SHAW

Sign in / Sign up

Export Citation Format

Share Document