scholarly journals Neural signatures of vigilance decrements predict behavioural errors before they occur

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hamid Karimi-Rouzbahani ◽  
Alexandra Woolgar ◽  
Anina N Rich

There are many monitoring environments, such as railway control, in which lapses of attention can have tragic consequences. Problematically, sustained monitoring for rare targets is difficult, with more misses and longer reaction times over time. What changes in the brain underpin these ‘vigilance decrements’? We designed a multiple-object monitoring (MOM) paradigm to examine how the neural representation of information varied with target frequency and time performing the task. Behavioural performance decreased over time for the rare target (monitoring) condition, but not for a frequent target (active) condition. This was mirrored in neural decoding using magnetoencephalography: coding of critical information declined more during monitoring versus active conditions along the experiment. We developed new analyses that can predict behavioural errors from the neural data more than a second before they occurred. This facilitates pre-empting behavioural errors due to lapses in attention and provides new insight into the neural correlates of vigilance decrements.

Author(s):  
Hamid Karimi-Rouzbahani ◽  
Alexandra Woolgar ◽  
Anina N. Rich

AbstractThere are many monitoring environments, such as railway control, in which lapses of attention can have tragic consequences. Problematically, sustained monitoring for rare targets is difficult, with more misses and longer reaction times over time. What changes in the brain underpin these “vigilance decrements”? We designed a multiple-object monitoring (MOM) paradigm to examine how the neural representation of information varied with target frequency and time performing the task. Behavioural performance decreased over time for the rare target (monitoring) condition, but not for a frequent target (active) condition. This was mirrored in the neural results: there was weaker coding of critical information during monitoring versus active conditions. We developed new analyses that can predict behavioural errors from the neural data more than a second before they occurred. This paves the way for pre-empting behavioural errors due to lapses in attention and provides new insight into the neural correlates of vigilance decrements.


2019 ◽  
pp. 286-303 ◽  
Author(s):  
Rebecca Alexander ◽  
Justine Megan Gatt

Resilience refers to the process of adaptive recovery following adversity or trauma. It is likely to include an intertwined series of dynamic interactions between neural, developmental, environmental, genetic, and epigenetic factors over time. Neuroscientific research suggests the potential role of the brain’s threat and reward systems, as well as executive control networks. Developmental research provides insight into how the environment may affect these neural systems across the lifespan towards greater risk or resilience to stress. Genetic work has revealed numerous targets that alter key neurochemical systems in the brain to influence mental health. Current challenges include ambiguities in the definition and measurement of resilience and a simplified focus on resilience as the absence of psychopathology, irrespective of levels of positive mental functioning. Greater emphasis on understanding the protective aspects of resilience and related well-being outcomes are important to delineate the unique neurobiological factors that underpin this process, so that effective interventions can be developed to assist vulnerable populations and resilience promotion.


2017 ◽  
Vol 28 (2) ◽  
pp. 602-611 ◽  
Author(s):  
Charlotte Prévost ◽  
Hakwan Lau ◽  
Dean Mobbs

Abstract Surpassing negative evaluation is a recurrent theme of success stories. Yet, there is little evidence supporting the counterintuitive idea that negative evaluation might not only motivate people, but also enhance performance. To address this question, we designed a task that required participants to decide whether taking up a risky challenge after receiving positive or negative evaluations from independent judges. Participants believed that these evaluations were based on their prior performance on a related task. Results showed that negative evaluation caused a facilitation in performance. Concurrent functional magnetic resonance imaging revealed that the motivating effect of negative evaluation was represented in the insula and striatum, while the performance boost was associated with functional positive connectivity between the insula and a set of brain regions involved in goal-directed behavior and the orienting of attention. These findings provide new insight into the neural representation of negative evaluation-induced facilitation.


2017 ◽  
Author(s):  
J. Brendan Ritchie ◽  
David Michael Kaplan ◽  
Colin Klein

AbstractSince its introduction, multivariate pattern analysis (MVPA), or “neural decoding”, has transformed the field of cognitive neuroscience. Underlying its influence is a crucial inference, which we call the Decoder’s Dictum: if information can be decoded from patterns of neural activity, then this provides strong evidence about what information those patterns represent. Although the Dictum is a widely held and well-motivated principle in decoding research, it has received scant philosophical attention. We critically evaluate the Dictum, arguing that it is false: decodability is a poor guide for revealing the content of neural representations. However, we also suggest how the Dictum can be improved on, in order to better justify inferences about neural representation using MVPA.


2019 ◽  
Author(s):  
Judith E. Fan ◽  
Jeffrey D. Wammes ◽  
Jordan B. Gunn ◽  
Daniel L. K. Yamins ◽  
Kenneth A. Norman ◽  
...  

AbstractDrawing is a powerful tool that can be used to convey rich perceptual information about objects in the world. What are the neural mechanisms that enable us to produce a recognizable drawing of an object, and how does this visual production experience influence how this object is represented in the brain? Here we evaluate the hypothesis that producing and recognizing an object recruit a shared neural representation, such that repeatedly drawing the object can enhance its perceptual discriminability in the brain. We scanned participants using fMRI across three phases of a training study: during training, participants repeatedly drew two objects in an alternating sequence on an MR-compatible tablet; before and after training, they viewed these and two other control objects, allowing us to measure the neural representation of each object in visual cortex. We found that: (1) stimulus-evoked representations of objects in visual cortex are recruited during visually cued production of drawings of these objects, even throughout the period when the object cue is no longer present; (2) the object currently being drawn is prioritized in visual cortex during drawing production, while other repeatedly drawn objects are suppressed; and (3) patterns of connectivity between regions in occipital and parietal cortex supported enhanced decoding of the currently drawn object across the training phase, suggesting a potential substrate for learning how to transform perceptual representations into representational actions. Taken together, our study provides novel insight into the functional relationship between visual production and recognition in the brain.Significance StatementHumans can produce simple line drawings that capture rich information about their perceptual experiences. However, the mechanisms that support this behavior are not well understood. Here we investigate how regions in visual cortex participate in the recognition of an object and the production of a drawing of it. We find that these regions carry diagnostic information about an object in a similar format both during recognition and production, and that practice drawing an object enhances transmission of information about it to downstream regions. Taken together, our study provides novel insight into the functional relationship between visual production and recognition in the brain.


2017 ◽  
Vol 372 (1718) ◽  
pp. 20160192 ◽  
Author(s):  
Brian C. Coe ◽  
Douglas P. Munoz

The anti-saccade task has emerged as an important tool for investigating the complex nature of voluntary behaviour. In this task, participants are instructed to suppress the natural response to look at a peripheral visual stimulus and look in the opposite direction instead. Analysis of saccadic reaction times (SRT: the time from stimulus appearance to the first saccade) and the frequency of direction errors (i.e. looking toward the stimulus) provide insight into saccade suppression mechanisms in the brain. Some direction errors are reflexive responses with very short SRTs (express latency saccades), while other direction errors are driven by automated responses and have longer SRTs. These different types of errors reveal that the anti-saccade task requires different forms of suppression, and neurophysiological experiments in macaques have revealed several potential mechanisms. At the start of an anti-saccade trial, pre-emptive top-down inhibition of saccade generating neurons in the frontal eye fields and superior colliculus must be present before the stimulus appears to prevent express latency direction errors. After the stimulus appears, voluntary anti-saccade commands must compete with, and override, automated visually initiated saccade commands to prevent longer latency direction errors. The frequencies of these types of direction errors, as well as SRTs, change throughout the lifespan and reveal time courses for development, maturation, and ageing. Additionally, patients diagnosed with a variety of neurological and/or psychiatric disorders affecting the frontal lobes and/or basal ganglia produce markedly different SRT distributions and types of direction errors, which highlight specific deficits in saccade suppression and inhibitory control. The anti-saccade task therefore provides valuable insight into the neural mechanisms of saccade suppression and is a valuable tool in a clinical setting. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’.


2016 ◽  
Author(s):  
Alona Fyshe ◽  
Gustavo Sudre ◽  
Leila Wehbe ◽  
Nicole Rafidi ◽  
Tom M. Mitchell

AbstractAs a person reads, the brain performs complex operations to create higher order semantic representations from individual words. While these steps are effortless for competent readers, we are only beginning to understand how the brain performs these actions. Here, we explore semantic composition using magnetoencephalography (MEG) recordings of people reading adjective-noun phrases presented one word at a time. We track the neural representation of semantic information over time, through different brain regions. Our results reveal two novel findings: 1) a neural representation of the adjective is present during noun presentation, but this neural representation is different from that observed during adjective presentation 2) the neural representation of adjective semantics observed during adjective reading is reactivated after phrase reading, with remarkable consistency. We also note that while the semantic representation of the adjective during the reading of the adjective is very distributed, the later representations are concentrated largely to temporal and frontal areas previously associated with composition. Taken together, these results paint a picture of information flow in the brain as phrases are read and understood.


2020 ◽  
Author(s):  
Lluís Hernández-Navarro ◽  
Ainhoa Hermoso-Mendizabal ◽  
Daniel Duque ◽  
Alexandre Hyafil ◽  
Jaime de la Rocha

It is commonly assumed that, during perceptual decisions, the brain integrates stimulus evidence until reaching a decision, and then performs the response. There are conditions, however (e.g. time pressure), in which the initiation of the response must be prepared in anticipation of the stimulus presentation. It is therefore not clear when the timing and the choice of perceptual responses depend exclusively on evidence accumulation, or when preparatory motor signals may interfere with this process. Here, we find that, in a free reaction time auditory discrimination task in rats, the timing of fast responses does not depend on the stimulus, although the choices do, suggesting a decoupling of the mechanisms of action initiation and choice selection. This behavior is captured by a novel model, the Parallel Sensory Integration and Action Model (PSIAM), in which response execution is triggered whenever one of two processes, Action Initiation or Evidence Accumulation, reaches a bound, while choice category is always set by the latter. Based on this separation, the model accurately predicts the distribution of reaction times when the stimulus is omitted, advanced or delayed. Furthermore, we show that changes in Action Initiation mediates both post-error slowing and a gradual slowing of the responses within each session. Overall, these results extend the standard models of perceptual decision-making, and shed a new light on the interaction between action preparation and evidence accumulation.


Organizational contradictions and process studies offer interwoven and complementary insights. Studies of dialectics, paradox, and dualities depict organizational contradictions that are oppositional as well as interrelated such that they persistently morph and shift over time. Studies of process often examine how contradictions fuel emergent, dynamic systems and stimulate novelty, adaptation, and transformation. Drawing from rich conversations at the Eighth International Symposium on Process Organization Studies, the contributors to this volume unpack these relationships in more depth. The chapters explore three main, connected themes through both conceptual and empirical studies, including (1) offering insight into how process theorizing advances understandings of organizational contradictions; (2) shedding light on how dialectics, paradoxes, and dualities fuel organizational processes that affect persistence and transformation; and (3) exploring the convergence and divergence of dialectics, paradox, and dualities lenses. Taken together, this book offers key insights in order to inform persistent, contradictory dynamics in organizations and organizational studies.


Brazil constitutes a globally vital but troubled economy. It accounts for the largest GDP in Latin America and ranks among the world’s largest exporters of critical commodities including iron ore, soya, coffee, and beef. In recent years Brazil’s global economic importance has been magnified by a surge in both outward and inward foreign direct investment. This has served to further internationalize what has been historically a relatively closed economy. The purpose of this Handbook is to offer real insight into the Brazil’s economic development in contemporary context, understanding its most salient characteristics and analyzing its structural features across various dimensions. At a more granular level, this volume accomplishes the following tasks. First, it provides an understanding of the economy’s evolution over time and the connection of its current characteristics to this evolution. Second, it analyzes Brazil’s broader place in the global economy, and considers the ways in which this role has changed, and is likely to change, over coming years. Third, reflecting contemporary concerns, the volume offers an understanding, not only of how one of the world’s key economies has developed and transformed itself, but also of the ways in which this process has yet to be completed. The volume thus analyzes the current challenges facing the Brazilian economy and the kinds of issues that need to be tackled for these to be addressed.


Sign in / Sign up

Export Citation Format

Share Document