The dark matter rises: the expanding world of regulatory RNAs

2013 ◽  
Vol 54 ◽  
pp. 1-16 ◽  
Author(s):  
Michael B. Clark ◽  
Anupma Choudhary ◽  
Martin A. Smith ◽  
Ryan J. Taft ◽  
John S. Mattick

The ability to sequence genomes and characterize their products has begun to reveal the central role for regulatory RNAs in biology, especially in complex organisms. It is now evident that the human genome contains not only protein-coding genes, but also tens of thousands of non–protein coding genes that express small and long ncRNAs (non-coding RNAs). Rapid progress in characterizing these ncRNAs has identified a diverse range of subclasses, which vary widely in size, sequence and mechanism-of-action, but share a common functional theme of regulating gene expression. ncRNAs play a crucial role in many cellular pathways, including the differentiation and development of cells and organs and, when mis-regulated, in a number of diseases. Increasing evidence suggests that these RNAs are a major area of evolutionary innovation and play an important role in determining phenotypic diversity in animals.

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Hilary Coller ◽  
Huiling Huang ◽  
Mithun Mitra ◽  
Kaiser Atai ◽  
Kirthana Sarathy

2015 ◽  
Vol 12 (5) ◽  
pp. 6568-6576 ◽  
Author(s):  
QI LIAO ◽  
YUNLIANG WANG ◽  
JIA CHENG ◽  
DONGJUN DAI ◽  
XINGYU ZHOU ◽  
...  

Burns ◽  
2020 ◽  
Vol 46 (5) ◽  
pp. 1128-1135 ◽  
Author(s):  
Wenchang Yu ◽  
Zaiwen Guo ◽  
Pengfei Liang ◽  
Bimei Jiang ◽  
Le Guo ◽  
...  

2020 ◽  
Vol 49 (D1) ◽  
pp. D962-D968 ◽  
Author(s):  
Zhao Li ◽  
Lin Liu ◽  
Shuai Jiang ◽  
Qianpeng Li ◽  
Changrui Feng ◽  
...  

Abstract Expression profiles of long non-coding RNAs (lncRNAs) across diverse biological conditions provide significant insights into their biological functions, interacting targets as well as transcriptional reliability. However, there lacks a comprehensive resource that systematically characterizes the expression landscape of human lncRNAs by integrating their expression profiles across a wide range of biological conditions. Here, we present LncExpDB (https://bigd.big.ac.cn/lncexpdb), an expression database of human lncRNAs that is devoted to providing comprehensive expression profiles of lncRNA genes, exploring their expression features and capacities, identifying featured genes with potentially important functions, and building interactions with protein-coding genes across various biological contexts/conditions. Based on comprehensive integration and stringent curation, LncExpDB currently houses expression profiles of 101 293 high-quality human lncRNA genes derived from 1977 samples of 337 biological conditions across nine biological contexts. Consequently, LncExpDB estimates lncRNA genes’ expression reliability and capacities, identifies 25 191 featured genes, and further obtains 28 443 865 lncRNA-mRNA interactions. Moreover, user-friendly web interfaces enable interactive visualization of expression profiles across various conditions and easy exploration of featured lncRNAs and their interacting partners in specific contexts. Collectively, LncExpDB features comprehensive integration and curation of lncRNA expression profiles and thus will serve as a fundamental resource for functional studies on human lncRNAs.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jun Yao ◽  
Douglas C Wu ◽  
Ryan M Nottingham ◽  
Alan M Lambowitz

Human plasma contains > 40,000 different coding and non-coding RNAs that are potential biomarkers for human diseases. Here, we used thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) combined with peak calling to simultaneously profile all RNA biotypes in apheresis-prepared human plasma pooled from healthy individuals. Extending previous TGIRT-seq analysis, we found that human plasma contains largely fragmented mRNAs from > 19,000 protein-coding genes, abundant full-length, mature tRNAs and other structured small non-coding RNAs, and less abundant tRNA fragments and mature and pre-miRNAs. Many of the mRNA fragments identified by peak calling correspond to annotated protein-binding sites and/or have stable predicted secondary structures that could afford protection from plasma nucleases. Peak calling also identified novel repeat RNAs, miRNA-sized RNAs, and putatively structured intron RNAs of potential biological, evolutionary, and biomarker significance, including a family of full-length excised intron RNAs, subsets of which correspond to mirtron pre-miRNAs or agotrons.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5651
Author(s):  
Eleftheria Papaioannou ◽  
María del Pilar González-Molina ◽  
Ana M. Prieto-Muñoz ◽  
Laura Gámez-Reche ◽  
Alicia González-Martín

Cancer immunology research has mainly focused on the role of protein-coding genes in regulating immune responses to tumors. However, despite more than 70% of the human genome is transcribed, less than 2% encodes proteins. Many non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been identified as critical regulators of immune cell development and function, suggesting that they might play important roles in orchestrating immune responses against tumors. In this review, we summarize the scientific advances on the role of ncRNAs in regulating adaptive tumor immunity, and discuss their potential therapeutic value in the context of cancer immunotherapy.


2021 ◽  
Author(s):  
Kazi Rahman ◽  
Alex A. Compton

The interferon-induced transmembrane ( IFITM ) family performs multiple functions in immunity, including inhibition of virus entry into cells. The IFITM repertoire varies widely between species and consists of protein-coding genes and pseudogenes. The selective forces driving pseudogenization within gene families are rarely understood. In this issue, the human pseudogene IFITM4P is characterized as a virus-induced, long non-coding RNA that contributes to restriction of Influenza A virus by regulating mRNA levels of IFITM1 , IFITM2 , and IFITM3 .


Sign in / Sign up

Export Citation Format

Share Document