scholarly journals The final step of 40S ribosomal subunit maturation is controlled by a dual key lock

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Laura Plassart ◽  
Ramtin Shayan ◽  
Christian Montellese ◽  
Dana Rinaldi ◽  
Natacha Larburu ◽  
...  

Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3' end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-EM analysis of late human pre-40S particles purified using a catalytically-inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3' end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.

2020 ◽  
Author(s):  
Laura Plassart ◽  
Ramtin Shayan ◽  
Christian Montellese ◽  
Dana Rinaldi ◽  
Natacha Larburu ◽  
...  

Preventing premature interaction of preribosomes with the translation apparatus is essential to translation accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3′ end, is safeguarded by protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-EM analysis of late human pre-40S particles purified using a catalytically-inactive form of ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATPloaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3′ end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.


2000 ◽  
Vol 20 (10) ◽  
pp. 3538-3549 ◽  
Author(s):  
Françoise Wyers ◽  
Michèle Minet ◽  
Marie Elisabeth Dufour ◽  
Le Thuy Anh Vo ◽  
François Lacroute

ABSTRACT The yeast poly(A) binding protein Pab1p mediates the interactions between the 5′ cap structure and the 3′ poly(A) tail of mRNA, whose structures synergistically activate translation in vivo and in vitro. We found that deletion of the PAT1 (YCR077c) gene suppresses a PAB1 gene deletion and that Pat1p is required for the normal initiation of translation. A fraction of Pat1p cosediments with free 40S ribosomal subunits on sucrose gradients. ThePAT1 gene is not essential for viability, although disruption of the gene severely impairs translation initiation in vivo, resulting in the accumulation of 80S ribosomes and in a large decrease in the amounts of heavier polysomes. Pat1p contributes to the efficiency of translation in a yeast cell-free system. However, the synergy between the cap structure and the poly(A) tail is maintained in vitro in the absence of Pat1p. Analysis of translation initiation intermediates on gradients indicates that Pat1p acts at a step before or during the recruitment of the 40S ribosomal subunit by the mRNA, a step which may be independent of that involving Pab1p. We conclude that Pat1p is a new factor involved in protein synthesis and that Pat1p might be required for promoting the formation or the stabilization of the preinitiation translation complexes.


Archaea ◽  
2008 ◽  
Vol 2 (3) ◽  
pp. 151-158 ◽  
Author(s):  
Andrea Ciammaruconi ◽  
Stefania Gorini ◽  
Paola Londei

We have identified a novel archaeal protein that apparently plays two distinct roles in ribosome metabolism. It is a polypeptide of about 18 kDa (termed Rbp18) that binds free cytosolic C/D box sRNAs in vivo and in vitro and behaves as a structural ribosomal protein, specifically a component of the 30S ribosomal subunit. As Rbp18 is selectively present in Crenarcheota and highly thermophilic Euryarchaeota, we propose that it serves to protect C/D box sRNAs from degradation and perhaps to stabilize thermophilic 30S subunits.


2010 ◽  
Vol 192 (18) ◽  
pp. 4592-4596 ◽  
Author(s):  
Aviram Rasouly ◽  
Chen Davidovich ◽  
Eliora Z. Ron

ABSTRACT The highly conserved bacterial ybeY gene is a heat shock gene whose function is not fully understood. Previously, we showed that the YbeY protein is involved in protein synthesis, as Escherichia coli mutants with ybeY deleted exhibit severe translational defects in vivo. Here we show that the in vitro activity of the translation machinery of ybeY deletion mutants is significantly lower than that of the wild type. We also show that the lower efficiency of the translation machinery is due to impaired 30S small ribosomal subunits.


2012 ◽  
Vol 23 (21) ◽  
pp. 4313-4322 ◽  
Author(s):  
Richa Sardana ◽  
Arlen W. Johnson

We previously identified Bud23 as the methyltransferase that methylates G1575 of rRNA in the P-site of the small (40S) ribosomal subunit. In this paper, we show that Bud23 requires the methyltransferase adaptor protein Trm112 for stability in vivo. Deletion of Trm112 results in a bud23Δ-like mutant phenotype. Thus Trm112 is required for efficient small-subunit biogenesis. Genetic analysis suggests the slow growth of a trm112Δ mutant is due primarily to the loss of Bud23. Surprisingly, suppression of the bud23Δ-dependent 40S defect revealed a large (60S) biogenesis defect in a trm112Δ mutant. Using sucrose gradient sedimentation analysis and coimmunoprecipitation, we show that Trm112 is also involved in 60S subunit biogenesis. The 60S defect may be dependent on Nop2 and Rcm1, two additional Trm112 interactors that we identify. Our work extends the known range of Trm112 function from modification of tRNAs and translation factors to both ribosomal subunits, showing that its effects span all aspects of the translation machinery. Although Trm112 is required for Bud23 stability, our results suggest that Trm112 is not maintained in a stable complex with Bud23. We suggest that Trm112 stabilizes its free methyltransferase partners not engaged with substrate and/or helps to deliver its methyltransferase partners to their substrates.


2004 ◽  
Vol 186 (19) ◽  
pp. 6634-6642 ◽  
Author(s):  
Jutta Hager ◽  
Bart L. Staker ◽  
Ursula Jakob

ABSTRACT The 23S rRNA methyltransferase RrmJ (FtsJ) is responsible for the 2′-O methylation of the universally conserved U2552 in the A loop of 23S rRNA. This 23S rRNA modification appears to be critical for ribosome stability, because the absence of functional RrmJ causes the cellular accumulation of the individual ribosomal subunits at the expense of the functional 70S ribosomes. To gain insight into the mechanism of substrate recognition for RrmJ, we performed extensive site-directed mutagenesis of the residues conserved in RrmJ and characterized the mutant proteins both in vivo and in vitro. We identified a positively charged, highly conserved ridge in RrmJ that appears to play a significant role in 23S rRNA binding and methylation. We provide a structural model of how the A loop of the 23S rRNA binds to RrmJ. Based on these modeling studies and the structure of the 50S ribosome, we propose a two-step model where the A loop undocks from the tightly packed 50S ribosomal subunit, allowing RrmJ to gain access to the substrate nucleotide U2552, and where U2552 undergoes base flipping, allowing the enzyme to methylate the 2′-O position of the ribose.


2000 ◽  
Vol 47 (4) ◽  
pp. 993-1005 ◽  
Author(s):  
R Gromadka ◽  
J Rytka

The newly discovered Saccharomyces cerevisiae gene KRR1 (YCL059c) encodes a protein essential for cell viability. Krr1p contains a motif of clustered basic amino acids highly conserved in the evolutionarly distant species from yeast to human. We demonstrate that Krr1p is localized in the nucleolus. The KRR1 gene is highly expressed in dividing cells and its expression ceases almost completely when cells enter the stationary phase. In vivo depletion of Krr1p leads to drastic reduction of 40S ribosomal subunits due to defective 18S rRNA synthesis. We propose that Krr1p is required for proper processing of pre-rRNA and the assembly of preribosomal 40S subunits.


2002 ◽  
Vol 13 (10) ◽  
pp. 3683-3695 ◽  
Author(s):  
Petra Björk ◽  
Göran Baurén ◽  
ShaoBo Jin ◽  
Yong-Guang Tong ◽  
Thomas R. Bürglin ◽  
...  

Synthesis of the ribosomal subunits from pre-rRNA requires a large number of trans-acting proteins and small nucleolar ribonucleoprotein particles to execute base modifications, RNA cleavages, and structural rearrangements. We have characterized a novel protein, RNA-binding domain-1 (RBD-1), that is involved in ribosome biogenesis. This protein contains six consensus RNA-binding domains and is conserved as to sequence, domain organization, and cellular location from yeast to human. RBD-1 is essential in Caenorhabditis elegans. In the dipteran Chironomus tentans, RBD-1 (Ct-RBD-1) binds pre-rRNA in vitro and anti-Ct-RBD-1 antibodies repress pre-rRNA processing in vivo. Ct-RBD-1 is mainly located in the nucleolus in an RNA polymerase I transcription-dependent manner, but it is also present in discrete foci in the interchromatin and in the cytoplasm. In cytoplasmic extracts, 20–30% of Ct-RBD-1 is associated with ribosomes and, preferentially, with the 40S ribosomal subunit. Our data suggest that RBD-1 plays a role in structurally coordinating pre-rRNA during ribosome biogenesis and that this function is conserved in all eukaryotes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaowen Wang ◽  
Hong Zhang ◽  
Russell Sapio ◽  
Jun Yang ◽  
Justin Wong ◽  
...  

AbstractSOD1 is known as the major cytoplasmic superoxide dismutase and an anticancer target. However, the role of SOD1 in cancer is not fully understood. Herein we describe the generation of an inducible Sod1 knockout in KRAS-driven NSCLC mouse model. Sod1 knockout markedly reduces tumor burden in vivo and blocks growth of KRAS mutant NSCLC cells in vitro. Intriguingly, SOD1 is enriched in the nucleus and notably in the nucleolus of NSCLC cells. The nuclear and nucleolar, not cytoplasmic, form of SOD1 is essential for lung cancer cell proliferation. Moreover, SOD1 interacts with PeBoW complex and controls its assembly necessary for pre-60S ribosomal subunit maturation. Mechanistically, SOD1 regulates co-localization of PeBoW with and processing of pre-rRNA, and maturation of cytoplasmic 60S ribosomal subunits in KRAS mutant lung cancer cells. Collectively, our study unravels a nuclear SOD1 function essential for ribosome biogenesis and proliferation in KRAS-driven lung cancer.


2018 ◽  
Author(s):  
Jose L. Llácer ◽  
Tanweer Hussain ◽  
Adesh K. Saini ◽  
Jagpreet Nanda ◽  
Sukhvir Kaur ◽  
...  

SUMMARYIn eukaryotic translation initiation AUG recognition of the mRNA requires accommodation of Met-tRNAi in a “PIN” state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codons in vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.


Sign in / Sign up

Export Citation Format

Share Document