scholarly journals Convergent organization of aberrant MYB complex controls oncogenic gene expression in acute myeloid leukemia

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sumiko Takao ◽  
Lauren Forbes ◽  
Masahiro Uni ◽  
Shuyuan Cheng ◽  
Jose Mario Bello Pineda ◽  
...  

Dysregulated gene expression contributes to most prevalent features in human cancers. Here, we show that most subtypes of acute myeloid leukemia (AML) depend on the aberrant assembly of MYB transcriptional co-activator complex. By rapid and selective peptidomimetic interference with the binding of CBP/P300 to MYB, but not CREB or MLL1, we find that the leukemic functions of MYB are mediated by CBP/P300 co-activation of a distinct set of transcription factor complexes. These MYB complexes assemble aberrantly with LYL1, E2A, C/EBP family members, LMO2, and SATB1. They are organized convergently in genetically diverse subtypes of AML and are at least in part associated with inappropriate transcription factor co-expression. Peptidomimetic remodeling of oncogenic MYB complexes is accompanied by specific proteolysis and dynamic redistribution of CBP/P300 with alternative transcription factors such as RUNX1 to induce myeloid differentiation and apoptosis. Thus, aberrant assembly and sequestration of MYB:CBP/P300 complexes provide a unifying mechanism of oncogenic gene expression in AML. This work establishes a compelling strategy for their pharmacologic reprogramming and therapeutic targeting for diverse leukemias and possibly other human cancers caused by dysregulated gene control.

2020 ◽  
Author(s):  
Lauren Forbes ◽  
Paolo Cifani ◽  
Gerard Minuesa ◽  
Celine Chen ◽  
Sumiko Takao ◽  
...  

HighlightsCell-penetrant peptidomimetic inhibitor selectively blocks oncogenic MYB:CBP/P300 activity in diverse leukemias but not normal blood cellsMYB assembles aberrant transcription factor complexes in AML required for programming leukemic gene expressionCBP/P300 sequestration contributes to MYB-dependent leukemogenic gene expression and chromatin organizationSummaryDysregulated gene expression is one of the most prevalent features in human cancers. Here, we show that most subtypes of acute myeloid leukemia (AML) depend on the aberrant assembly of the MYB transcriptional co-activator complex. By rapid and selective peptidomimetic interference with the binding of CBP/P300 to MYB, but not CREB or MLL, we find that the leukemic functions of MYB are mediated by CBP/P300-mediated co-activation of a distinct set of transcriptional factor complexes that are aberrantly assembled with MYB in AML cells. This therapeutic remodeling is accompanied by dynamic redistribution of CBP/P300 complexes to genes that control cellular differentiation and growth. We propose that convergently organized transcription factor complexes in AML cells control oncogenic gene expression programs. These findings establish a compelling strategy for pharmacologic reprogramming of oncogenic gene expression that supports its targeting for leukemias and possibly other human cancers caused by dysregulated gene control.


2018 ◽  
Vol 16 (5) ◽  
pp. 791-804 ◽  
Author(s):  
Shankha Subhra Chatterjee ◽  
Mayukh Biswas ◽  
Liberalis Debraj Boila ◽  
Debasis Banerjee ◽  
Amitava Sengupta

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 305-305
Author(s):  
Britta Will ◽  
Thomas O. Vogler ◽  
Swathi-rao Narayanagari ◽  
Boris Bartholdy ◽  
Tihomira I. Todorova ◽  
...  

Abstract Genomic studies have shown that human cancer is rarely associated with a complete loss of transcripts; instead, acquired DNA alterations often occur within the non-coding part of the genome, are enriched in gene-regulatory regions, and cause only moderate transcriptional changes. It is currently not well understood how such moderate gene expression changes impact normal tissue function and how they contribute to malignant transformation. Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) develop through a multi-step transformation process originating in hematopoietic stem cells (HSCs) and mainly present in the elderly (median age of >65 years at diagnosis). Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces AML in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet moderate PU.1 inhibition is common in AML patients. At the example of the Ets-family transcription factor PU.1, which is indispensable for HSC function and the differentiation of cells within the myeloid as well as lymphoid lineages, we tested the hypothesis that even moderate gene expression alterations of key regulators can drive malignant transformation. We assessed the effects of minimal PU.1 inhibition on hematopoiesis in a novel mouse model that co-models the genomic context found in aging human individuals and patients with MDS/AML. Mice lacking Msh2, the key component of the MutSα and MutSβ complexes mediating DNA mismatch repair, accumulate elevated numbers of point mutations, in particular C/G>T/A transitions and small insertions/deletions resembling the mutation spectrum acquired in HSCs in aging human individuals and patients with MDS and AML. We crossed Msh2-/- mice with animals carrying a heterozygous deletion of an upstream regulatory element of PU.1 (UREΔ/+). UREΔ/+Msh2-/- mice exhibited a significant, but very modest reduction of PU.1 expression on average by 26-37% in fractionated hematopoietic multipotent stem and myeloid progenitor cells. Strikingly, this minimal reduction of PU.1 led to the emergence of an aggressive, transplantable AML in more than two thirds of UREΔ/+Msh2-/- mice which was never observed in URE+/+Msh2-/- mice. Overt leukemia was preceded by a preleukemic phase hallmarked by an expanded population of multipotent murine hematopoietic stem cell enriched cells (HSPCs) that was myeloid-biased and less quiescent than their wild type counterpart. Longitudinal monitoring of preleukemic UREΔ/+Msh2-/- mice revealed a progressive increase in immature myeloid cells along with a gradual decrease in mature myeloid cells, as well as expansion of phenotypic HSPC compartments and multi-lineage dysplasia resembling human MDS. AML progression was accompanied by additional inhibition of a PU.1-cooperating factor, interferon responsive factor 8 (Irf8). Irf8 expression restoration rescued impaired expression of genes harboring PU.1/IRF consensus binding sites, led to the loss of aberrant self-renewal, promoted myeloid differentiation, and induced apoptosis in leukemic UREhetMsh2-/- cells demonstrating that Irf8 impairment functionally cooperates with minimally reduced PU.1 expression in our model. We also found evidence of disease-relevant joint PU.1/IRF8 inhibition in human myeloid leukemogenesis: (1) patients with MDS with a higher risk for the progression to AML had lower IRF8 levels; (2) lower IRF8 expression was detected specifically in AML patients with reduced PU.1 levels; (3) restoration of IRF8 expression induced differentiation in IRF8 low expressing AML cells, and (4) a positive correlation of PU.1 and IRF8 expression was found in human leukemia stem cells, but not in healthy HSCs. Strikingly, comparative pathway analysis revealed a genome-wide molecular resemblance of preleukemic and leukemic UREΔ/+Msh2-/- mice with gene expression profiles from human MDS and AML patients, respectively. Our study demonstrates that minimal reduction of a key lineage-specific transcription factor that commonly occurs in human disease is sufficient to initiate cancer development and provides mechanistic insight into the formation and progression of preleukemic stem cells in MDS and AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2619-2619 ◽  
Author(s):  
Marita Lagergren Lindberg ◽  
Petra Hååg ◽  
Ali Moshfegh ◽  
Lena Kanter ◽  
Magnus Bjorkholm ◽  
...  

Abstract In this study we aimed to identify biomarkers predictive of clinical response in acute myeloid leukemia (AML). For this purpose mRNA was isolated from diagnostic samples from 42 AML patients (“training cohort”) and subjected to Affymetrix® gene expression analysis. All patients entered complete remission (CR) after high-dose induction chemotherapy, reaching a median CR duration of 161 (range 12-3701) days. Samples from patients with “short CR duration” (<6 months, n=24) and “long CR duration” (>6 months n=18), respectively, were pooled and compared. Gene expression analyses revealed 383 genes to be up-regulated and 610 genes down-regulated more than two fold in samples from patients with short, as compared to those with long CR duration. Ten genes were found to be up-regulated >30 times, with the runt-related transcription factor 1; translocated to 1 (cyclin D-related) (RUNX1T1) gene showing the highest differential expression (116-fold), while annexin 1 (ANXA1) was the most down-regulated gene (58-fold). Significantly higher transcript levels of RUNX1T1 were confirmed in the poor outcome group when performing quantitative real time polymerase chain reaction (qRT-PCR) on individual samples (n=20, p<0.002). Subjecting our data to pathway analysis (Ingenuity®) comparing the same groups, we focused on RUNX1T1 and created a network of RUNX1T1 interacting molecules. Utilizing the IPA database to create a network over interacting molecules of RUNX1T1, we identified a majority of these to be transcriptional regulators and among them the transcription factor 3 (TCF3) to be up-regulated 5-fold in patients with short CR duration. Our training cohort data were validated in silico extracting information from an independent study by Metzeler et al, publicly available from Oncomine® (www.oncomine.org) and encompassing diagnostic samples from 162 AML patients. Among genes differentially and similarly regulated in poor responders in both the training and validation cohorts we observed TCF3, chemokine (C-X-C motif) ligand 3 (CXCL3), Zinc finger, MIZ-type containing 1 (ZMIZ1) (up-regulated) and Peroxiredoxin 2 (PRDX2) (down-regulated). Analyses of clinical outcome revealed that AML patients with a high ZMIZ1 expression had a significantly decreased overall survival (OS) as compared to that of patients with a low ZMIZ1 expression (p <0.03). ZMIZ1 has been reported to be involved in tumor growth in general and suggested to interact with activated NOTCH in inducing leukemia, but its more precise role in AML is still unclear. In conclusion, we report clear differences in gene expression in diagnostic samples from AML patients with subsequent poor vs. better long-term clinical outcome to therapy, thus to constitute possible novel predictive biomarkers for response. In our training set RUNX1T1 was the most differentially expressed gene, while ZMIZ1 was upregulated in both the training and validation sets and significantly associated with survival. Further, functional studies of differentially expressed genes in clinical subsets of AML patients appear warranted. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1575-1575 ◽  
Author(s):  
Heike Weidner ◽  
Marius Bill ◽  
Laura Schmalbrock ◽  
Madlen Jentzsch ◽  
Laura Kloss ◽  
...  

Abstract In acute myeloid leukemia (AML) high expression of the transcription factor ERG (ETS related gene) is associated with dismal outcome. The mechanisms that regulate differential ERG expression remain to be fully elucidated. MicroRNAs (miRs), small RNAs that are able to regulate gene expression, have emerged as important players in AML. We hypothesized that part of the differential expression of ERG is mediated by miRs. In silico prediction tools identified three putative miR-9 binding sites (BS) in the 3'-untranslated region (UTR) of ERG. First, we determined the expression levels of ERG & miR-9 in eight leukemia cell lines (i.e. KG1a, K562, THP-1, MV4-11, EOL1, NB4, OCI-AML3 & ME1) & found an inverse correlation between ERG & miR-9 expression (rank correlation -0.90). The cell line KG1a had the highest ERG & low miR-9 expression, and was therefore used for miR-9 overexpression experiments. In these cells miR-9 overexpression decreased ERG expression at the mRNA level to 82±7% (P=.079) & at the protein level to 72±14% (P=.005) after 12 hours (h) compared to empty vector control transfected cells. Next, we tested the activity of the three putative miR-9 BS in the 3'-UTR of ERG using luciferase assays. 12 h after cotransfection of HEK-293T cells with a miR-9 overexpression vector & an appropriate luciferase vector containing two of the putative BS (BS1 & BS2) from the 3'-UTR of ERG, we found the luciferase activity reduced to 52±4% (P=.023). Mutation experiments showed BS1, but not BS2 to be essential for this activity. The insertion of BS3 into the luciferase vector had no effect on reporter gene expression. Thus miR-9 most likely regulates expression of the transcription factor ERG by directly binding to BS1 in its 3'-UTR. To test if a differential expression of miR-9 is also of functional significance in AML, we first analyzed its impact on cell proliferation. Overexpression of miR-9 led to decreased proliferation rates in KG1a cells compared to control vector treated cells. After 5 days, the relative cell count was 133±21% vs. 241±67% in the miR-9 overexpressing cells compared to empty vector expressing cells, respectively. Next, we determined if this difference was based on a higher apoptosis rate. An Annexin V staining revealed no significant difference between the apoptotic threshold of miR-9 overexpressing (21%) and empty vector cells (21%) after 24 h. However, a subsequent cell cycle analysis demonstrated a higher percentage of miR-9 overexpressing cells in the G2/M phase, (39±2%) compared to the empty vector control treated cells (31±3%) after 24 h (P=.084), indicating that the cell cycle is slowed or stopped during cell division. Since miR-9 targets the poor prognostic marker ERG & higher miR-9 expression led to decreased proliferation & reduced cycling in AML cells in vitro we speculated that the differential miR-9 expression would also impact the outcome of AML patients (pts). Mature miR-9 is derived from three precursor molecules of which pre-miR-9-1 & pre-miR-9-3 are known to be expressed in hematopoietic cells. We assessed the pre-miR-9-1 expression of bone marrow by real-time PCR in 131 AML pts (median age 64 [range 22 – 75] years) with favorable (n=4, 3%), intermediate (n=90, 69%), adverse (n=33, 25%), or unknown (n=4, 3%) cytogenetic risk (according to the Medical Research Council [MRC] Classification) who received a RIC-HCT. The median follow-up was 4 years. The pre-miR-9-1 expression levels were normalized to ABL to define high & low pre-miR-9-1 expressers by the median expression of all AML pts. At diagnosis, high pre-miR-9-1 expresser status associated with a lower white blood count (P=.065) and lower % of peripheral blasts (P=.108) by trend. Furthermore, pts with high pre-miR-9-1 expression were more likely to be NPM1 wild-type (P=.047) & FLT3-ITD negative (P=.020). Pts with high pre-miR-9-1 had a lower probability of relapse (P=.048). In conclusion, miR-9 targets & regulates expression of the poor outcome predictor ERG. Overexpression of miR-9 led to decreased proliferation and a pause in AML cell cycling. Furthermore, high pre-miR-9-1 expression associated with reduced relapse rates in AML. Thus a pharmacologically induced expression of miR-9 in AML blasts may improve outcomes of AML pts. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document