scholarly journals Epi-mutations for spermatogenic defects by maternal exposure to di(2-ethylhexyl) phthalate

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yukiko Tando ◽  
Hitoshi Hiura ◽  
Asuka Takehara ◽  
Yumi Ito-Matsuoka ◽  
Takahiro Arima ◽  
...  

Exposure to environmental factors during fetal development may lead to epigenomic modifications in fetal germ cells, altering gene expression and promoting diseases in successive generations. In mouse, maternal exposure to di(2-ethylhexyl) phthalate (DEHP) is known to induce defects in spermatogenesis in successive generations, but the mechanism(s) of impaired spermatogenesis are unclear. Here, we showed that maternal DEHP exposure results in DNA hypermethylation of promoters of spermatogenesis-related genes in fetal testicular germ cells in F1 mice, and hypermethylation of Hist1h2ba, Sycp1, and Taf7l, which are crucial for spermatogenesis, persisted from fetal testicular cells to adult spermatogonia, resulting in the downregulation of expression of these genes. Forced methylation of these gene promoters silenced expression of these loci in a reporter assay. These results suggested that maternal DEHP exposure-induced hypermethylation of Hist1h2ba, Sycp1, and Taf7l results in downregulation of these genes in spermatogonia and subsequent defects in spermatogenesis, at least in the F1 generation.

2021 ◽  
Author(s):  
Yukiko Tando ◽  
Hitoshi Hiura ◽  
Asuka Takehara ◽  
Yumi Ito-Matsuoka ◽  
Takahiro Arima ◽  
...  

Exposure to environmental factors during fetal development may lead to epigenomic modifications in fetal germ cells, altering gene expression and promoting diseases in successive generations. In mouse, maternal exposure to Di (2-ethylhexyl) phthalate (DEHP) is known to induce defects in spermatogenesis in successive generations, but the mechanism(s) of impaired spermatogenesis are unclear. Here, we showed that maternal DEHP exposure results in DNA hypermethylation of promoters of spermatogenesis-related genes in fetal testicular germ cells in F1 mice, and hypermethylation of Hist1h2ba, Sycp1 and Taf7l, which are crucial for spermatogenesis, persisted from fetal testicular cells to adult spermatogonia, resulting in the downregulation of expression of these genes. Forced methylation of these gene promoters silenced expression of these loci in a reporter assay. Expression and methylation of those genes tended to be downregulated and increased, respectively in F2 spermatogonia following maternal DEHP exposure. These results suggested that DEHP induced hypermethylation of Hist1h2ba, Sycp1 and Taf7l in fetal germ cells results in downregulation of these genes in spermatogonia and subsequent defects in spermatogenesis, at least in the F1 generation.


1982 ◽  
Vol 155 (6) ◽  
pp. 1719-1729 ◽  
Author(s):  
U Hurtenbach ◽  
G M Shearer

Spleen cells from mice injected intravenously with syngeneic male germ cells exhibited reduced immune functions as determined by natural killer cell activity, mixed lymphocyte reactivity and cytotoxic lymphocyte (CTL) function. The decrease in CTL responses to trinitrophenyl-modified self (TNP-self) was detected as early as 4 d after sperm injection and was observed to H-2 alloantigens 3 wk after injection. Radiosensitive suppressor T cells were found to suppress the CTL response to TNP-self. Suppression lasted for a period of at least 7 wk after a single inoculation of the germ cells. Some variability in immune suppression capability was observed using different preparations of germ cells which are not yet completely understood. Sperm were more effective in inducing suppression than testicular cells derived from the seminiferous tubules. Furthermore, sperm from older animals were more effective than those from younger mice. These findings are discussed with respect to possible regulatory influences of germ cells on the immune system when the blood-testes barrier is broken.


2021 ◽  
Author(s):  
Petros Georgopoulos ◽  
Maria Papaioannou ◽  
Soultana Markopoulou ◽  
Aikaterini Fragou ◽  
George Kouvatseas ◽  
...  

Abstract PurposeThe aim of this study was to explore the diagnostic potential of a panel of five hypermethylated gene promoters in bladder cancer. Individuals with primary BCa and control individuals matching the gender, age and smoking status of the cancer patients were recruited. DNA methylation was assessed for the gene promoters of RASSF1, RARβ, DAPK, hTERT and APC in urine samples collected by spontaneous urination. Fifty patients and 35 healthy controls were recruited, with average age of 70.26 years and average smoking status of 44.78 pack-years. In the BCa group, DNA methylation was detected in 27(61.4%) samples. RASSF1 was methylated in 52.2% of samples. Only 3(13.6%) samples from the control group were methylated, all in the RASSF1 gene promoter. The specificity and sensitivity of this panel of genes to diagnose BCa was 86% and 61% respectively. The RASSF1 gene could diagnose BCa with specificity 86.4% and sensitivity 52.3%. Promoter DNA methylation of this panel of five genes could be further investigated as urine biomarker for the diagnosis of BCa. The RASSF1 could be a single candidate biomarker for predicting BCa patients versus controls. Studies are required in order to develop a geographically adjusted diagnostic biomarker for BCa.Trial registration: ACTRN12620000258954


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3355-3355
Author(s):  
Warren Fiskus ◽  
Pace Johnston ◽  
Rajeshree Joshi ◽  
Rekha Rao ◽  
Celalettin Ustun ◽  
...  

Abstract Lysine specific histone methylation and deacetylation and DNA hypermethylation are involved in the epigenetic silencing of tumor suppressor genes (TSG), e.g., p15 and p16. DNA methyltransferase (DNMT) inhibitors 5-azacytidine and 5-aza-2’-deoxycytidine demethylate the CpG dinucleotide islands in or near gene promoters, leading to derepression of TSGs in AML. SGI-110 (S110) (Cancer Res.2007; 67:6400) and SGI-1036 (SuperGen, Inc.) are novel, DNMT inhibitors, which also deplete DNMT1 levels. SGI-110 is a dinucleotide containing 5-aza-2’-deoxycytidine and SGI-1036 is a non-nucleoside heterocycle. The multi-protein complex PRC (polycomb repressive complex) 2 that contains the three core proteins EZH2, SUZ12 and EED, has intrinsic histone methyltransferase (HMTase) activity. This is mediated by the SET domain of EZH2, which induces trimethylation of histone H3 on lysine (K)-27. We recently reported that treatment with the pan-HDAC inhibitor panobinostat (LBH589, Novartis Pharmaceutical Corp) acetylates and inhibits the ATP binding and chaperone function of hsp90, as well as depletes the levels of EZH2, Suz12 and EED in cultured and primary AML cells (Mol Cancer Ther.2006; 5:3096). Within the PRC2 complex, EZH2 was shown to interact with and modulate the DNA methyltransferases DNMT1, DNMT3a and DNMT3b, which affects their binding to the EZH2-targeted gene promoters. In the present studies we determined the effects of SGI-110 or SGI-1036 and LBH589 on the PRC2 proteins EZH2 and SUZ12, and DNMT1, in the cultured (HL-60, OCI-AML3 and K562) and primary AML cells. Treatment with SGI-110 (0.5 to 2.0 μM) or SGI-1036 (0.5 and 1.0 μM) for 24 hours depleted protein levels of DNMT1 and EZH2 in the cultured and primary AML cells. SGI-110 and SGI-1036 promoted proteasomal degradation of DNMT1 and EZH2 since co-treatment with bortezomib significantly restored DNMT1 and EZH2 levels in the AML cells. Following treatment with SGI-110 or SGI-1036, bisulfite modification and methylation specific PCR demonstrated increase in unmethylated promoter DNA of p15 and JunB. This was associated with induction of the mRNA and protein levels of p15 and JunB, as well as caused inhibition of cell cycle progression (% of cells increased in G1 and increased in S phase) and colony growth in the soft agar. Treatment with 1.0 μM of SGI-110 or SGI-1036 also induced PARP cleavage activity of caspases and induced morphologic evidence of apoptosis in the AML cells. Co-treatment with 10 to 50 nM panobinostat enhanced SGI-110 or SGI-1036 mediated depletion of DNMT1 and EZH2, with more de-repression of the p15 and JunB and significant increase in apoptosis of AML cells. Collectively, these findings indicate that, SGI-110 and SGI-1036 deplete DNMT1 and EZH2 levels, as well as exert potent anti-AML activity. Additionally, combined epigenetic therapy consisting of SGI-110 or SGI-1036 in combination with panobinostat may represent a promising novel treatment of AML.


Sign in / Sign up

Export Citation Format

Share Document