scholarly journals Combined effect of cell geometry and polarity domains determines the orientation of unequal division

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Benoit G Godard ◽  
Remi Dumollard ◽  
Carl-Philipp Heisenberg ◽  
Alex McDougall

Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).

2010 ◽  
Vol 10 ◽  
pp. 1424-1434 ◽  
Author(s):  
John A. Schiel ◽  
Rytis Prekeris

Cytokinesis is the final stage of mitotic cell division that results in a physical separation of two daughter cells. Cytokinesis begins in the early stages of anaphase after the positioning of the cleavage plane and after the chromosomes segregate. This involves the recruitment and assembly of an actomyosin contractile ring, which constricts the plasma membrane and compacts midzone microtubules to form an electron-dense region, termed the midbody, located within an intracellular bridge. The resolution of this intracellular bridge, known as abscission, is the last step in cytokinesis that separates the two daughter cells. While much research has been done to delineate the mechanisms mediating actomyosin ring formation and contraction, the machinery that is responsible for abscission remains largely unclear. Recent work from several laboratories has demonstrated that dramatic changes occur in cytoskeleton and endosome dynamics, and are a prerequisite for abscission. However, the mechanistic details that regulate the final plasma membrane fusion during abscission are only beginning to emerge and are the subject of considerable controversy. Here we review recent studies within this field and discuss the proposed models of cell abscission.


2009 ◽  
Vol 184 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Jen-Hsuan Wei ◽  
Joachim Seemann

The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.


2001 ◽  
Vol 155 (4) ◽  
pp. 613-624 ◽  
Author(s):  
Frédéric Delbac ◽  
Astrid Sänger ◽  
Eva M. Neuhaus ◽  
Rolf Stratmann ◽  
James W. Ajioka ◽  
...  

In apicomplexan parasites, actin-disrupting drugs and the inhibitor of myosin heavy chain ATPase, 2,3-butanedione monoxime, have been shown to interfere with host cell invasion by inhibiting parasite gliding motility. We report here that the actomyosin system of Toxoplasma gondii also contributes to the process of cell division by ensuring accurate budding of daughter cells. T. gondii myosins B and C are encoded by alternatively spliced mRNAs and differ only in their COOH-terminal tails. MyoB and MyoC showed distinct subcellular localizations and dissimilar solubilities, which were conferred by their tails. MyoC is the first marker selectively concentrated at the anterior and posterior polar rings of the inner membrane complex, structures that play a key role in cell shape integrity during daughter cell biogenesis. When transiently expressed, MyoB, MyoC, as well as the common motor domain lacking the tail did not distribute evenly between daughter cells, suggesting some impairment in proper segregation. Stable overexpression of MyoB caused a significant defect in parasite cell division, leading to the formation of extensive residual bodies, a substantial delay in replication, and loss of acute virulence in mice. Altogether, these observations suggest that MyoB/C products play a role in proper daughter cell budding and separation.


2019 ◽  
Author(s):  
Clint S. Ko ◽  
Prateek Kalakuntla ◽  
Adam C. Martin

AbstractDuring development, coordinated cell shape changes and cell divisions sculpt tissues. While these individual cell behaviors have been extensively studied, how cell shape changes and cell divisions that occur concurrently in epithelia influence tissue shape is less understood. We addressed this question in two contexts of the early Drosophila embryo: premature cell division during mesoderm invagination, and native ectodermal cell divisions with ectopic activation of apical contractility. Using quantitative live-cell imaging, we demonstrated that mitotic entry reverses apical contractility by interfering with medioapical RhoA signaling. While premature mitotic entry inhibits mesoderm invagination, which relies on apical constriction, mitotic entry in an artificially contractile ectoderm induced ectopic tissue invaginations. Ectopic invaginations resulted from medioapical myosin loss in neighboring mitotic cells. This myosin loss enabled non-mitotic cells to apically constrict through mitotic cell stretching. Thus, the spatial pattern of mitotic entry can differentially regulate tissue shape through signal interference between apical contractility and mitosis.


2005 ◽  
Vol 168 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Félix Machín ◽  
Jordi Torres-Rosell ◽  
Adam Jarmuz ◽  
Luis Aragón

Mitotic cell division involves the equal segregation of all chromosomes during anaphase. The presence of ribosomal DNA (rDNA) repeats on the right arm of chromosome XII makes it the longest in the budding yeast genome. Previously, we identified a stage during yeast anaphase when rDNA is stretched across the mother and daughter cells. Here, we show that resolution of sister rDNAs is achieved by unzipping of the locus from its centromere-proximal to centromere-distal regions. We then demonstrate that during this stretched stage sister rDNA arrays are neither compacted nor segregated despite being largely resolved from each other. Surprisingly, we find that rDNA segregation after this period no longer requires spindles but instead involves Cdc14-dependent rDNA axial compaction. These results demonstrate that chromosome resolution is not simply a consequence of compacting chromosome arms and that overall rDNA compaction is necessary to mediate the segregation of the long arm of chromosome XII.


2010 ◽  
Vol 188 (1) ◽  
pp. 7-9
Author(s):  
Ramsey A. Saleem ◽  
John D. Aitchison

Cell division depends critically on the temporally controlled assembly of mitotic spindles, which are responsible for the distribution of duplicated chromosomes to each of the two daughter cells. To gain insight into the process, Vizeacoumar et al., in this issue (Vizeacoumar et al. 2010. J. Cell Biol. doi:10.1083/jcb.200909013), have combined systems genetics with high-throughput and high-content imaging to comprehensively identify and classify novel components that contribute to the morphology and function of the mitotic spindle.


2015 ◽  
Vol 26 (7) ◽  
pp. 1286-1295 ◽  
Author(s):  
Francisco Lázaro-Diéguez ◽  
Iaroslav Ispolatov ◽  
Anne Müsch

All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 571-571
Author(s):  
William T. Tse ◽  
Livana Soetedjo ◽  
Timothy Lax ◽  
Lei Wang ◽  
Patrick J. Kennedy

Abstract Abstract 571 Asymmetric cell division, a proposed mechanism by which hematopoietic progenitor/stem cells (HPSC) maintain a balance between self-renewal and differentiation, has rarely been observed. Here we report the surprising finding that cultured mouse primary HPSC routinely generate pairs of daughter cells with 2 distinct phenotypes after a single round of cell division. Mouse bone marrow cells were cultured on chamber slides in the presence of stem cell factor (SCF). BrdU was added overnight to label dividing cells, and the cells were examined by immunofluorescence microscopy on day 2–4 of culture. In each BrdU+c-Kit+ divided cell doublet, c-Kit was invariably expressed in only 1 of the 2 daughter cells. In contrast, the other daughter cell was negative for c-Kit but positive for the asymmetric cell fate determinant Numb and mature myeloid markers Mac1, Gr1, M-CSFR and F4/80. Similarly, in each BrdU+Sca1+ cell doublet, 1 daughter cell was positive for the stem cell markers Sca1, c-Kit, CD150 and CD201, whereas the other cell was negative for these markers but positive for Numb and the mature myeloid markers. Analysis of 400 such doublets showed that the probability of HPSC undergoing asymmetric division was 99.5% (95% confidence interval 98–100%), indicating that asymmetric division in HPSC is in fact not rare but obligatory. In other model systems, it has been shown that activation of the atypical protein kinase C (aPKC)-Par6-Par3 cell polarity complex and realignment of the microtubule cytoskeleton precede asymmetric cell division. We asked whether similar steps are involved in the asymmetric division of HPSC. We found that c-Kit receptors, upon stimulation by SCF, rapidly capped at an apical pole next to the microtubule-organizing center, followed by redistribution to the same pole of the aPKC-Par6-Par3 complex and microtubule-stabilizing proteins APC, β-catenin, EB1 and IQGAP1. Strikingly, after cell division, the aPKC-Par6-Par3 complex and other polarity markers all partitioned only into the c-Kit+/Sca1+ daughter cell and not the mature daughter cell. The acetylated and detyrosinated forms of stabilized microtubules were also present only in the c-Kit+/Sca1+ cell, as were the Aurora A and Polo-like kinases, 2 mitotic kinases associated with asymmetric cell division. To understand how c-Kit activation triggers downstream polarization events, we studied the role of lipid rafts, cholesterol-enriched microdomains in the cell membrane that serve as organization centers of signaling complexes. These are enriched in phosphatidylinositol 4,5-bisphosphate and annexin 2, putative attachment sites for the aPKC-Par6-Par3 complex. We found that SCF stimulation led to coalescence of lipid raft components at the site of the c-Kit cap, and treatment with a wide range of inhibitors that blocked lipid raft formation abrogated polarization of the aPKC-Par6-Par3 complex and division of the c-Kit+/Sca1+ cells. Because obligatory asymmetric division in cultured HPSC would prevent a net increase in their number, we sought a way to bypass its mechanism. We tested whether inhibition of protein phosphatase 2A (PP2A), a physiological antagonist of aPKC, would enhance aPKC activity and promote self-renewal of HPSC. Treatment of cultured HPSC with okadaic acid or calyculin, 2 well-characterized PP2A inhibitors, increased the percent of c-Kit+/Sca1+ cells undergoing symmetric division from 0% to 23.3% (p<0.001). In addition, small colonies comprised of symmetrically dividing cells uniformly positive for Sca1, c-Kit, CD150 and CD201 were noted in the culture. To functionally characterize the effect of PP2A inhibition, mouse bone marrow cells were cultured in the absence or presence of PP2A inhibitors and transplanted into irradiated congenic mice in a competitive repopulation assay. At 4–8 weeks post-transplant, the donor engraftment rate increased from ∼1 in mice transplanted with untreated cells to >30% in mice transplanted with PP2A inhibitor-treated cells. This dramatic increase indicates that PP2A inhibition can effectively perturb the mechanism of asymmetric cell division and promote the self-renewal of HPSC. In summary, our data showed that obligatory asymmetric cell division works to maintain a strict balance between self-renewal and differentiation in HPSC and pharmacological manipulation of the cell polarity machinery could potentially be used to expand HPSC for clinical use. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 7 (9) ◽  
pp. 1500-1512 ◽  
Author(s):  
Jennifer L. Gordon ◽  
Wandy L. Beatty ◽  
L. David Sibley

ABSTRACT Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of articulin-like proteins attached to underlying singlet microtubules. While proteins that comprise the elongating IMC have been described, little is known about its initial formation. Using Toxoplasma as a model system, we demonstrate that actin-like protein 1 (ALP1) is partially redistributed to the IMC at early stages in its formation. Immunoelectron microscopy localized ALP1 to a discrete region of the nuclear envelope, on transport vesicles, and on the nascent IMC of the daughter cells prior to the arrival of proteins such as IMC-1. The overexpression of ALP1 under the control of a strong constitutive promoter disrupted the formation of the daughter cell IMC, leading to delayed growth and defects in nuclear and apicoplast segregation. Collectively, these data suggest that ALP1 participates in the formation of daughter cell membranes during cell division in apicomplexan parasites.


2018 ◽  
Author(s):  
Sara Molinari ◽  
David L. Shis ◽  
James Chappell ◽  
Oleg A. Igoshin ◽  
Matthew R. Bennett

AbstractA defining property of stem cells is their ability to differentiate via asymmetric cell division, in which a stem cell creates a differentiated daughter cell but retains its own phenotype. Here, we describe a synthetic genetic circuit for controlling asymmetrical cell division in Escherichia coli. Specifically, we engineered an inducible system that can bind and segregate plasmid DNA to a single position in the cell. Upon division, the co-localized plasmids are kept by one and only one of the daughter cells. The other daughter cell receives no plasmid DNA and is hence irreversibly differentiated from its sibling. In this way, we achieved asymmetric cell division though asymmetric plasmid partitioning. We also characterized an orthogonal inducible circuit that enables the simultaneous asymmetric partitioning of two plasmid species – resulting in pluripotent cells that have four distinct differentiated states. These results point the way towards engineering multicellular systems from prokaryotic hosts.


Sign in / Sign up

Export Citation Format

Share Document