Obligatory Asymmetric Cell Division Regulates Self-Renewal In Hematopoietic Progenitor/Stem Cells

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 571-571
Author(s):  
William T. Tse ◽  
Livana Soetedjo ◽  
Timothy Lax ◽  
Lei Wang ◽  
Patrick J. Kennedy

Abstract Abstract 571 Asymmetric cell division, a proposed mechanism by which hematopoietic progenitor/stem cells (HPSC) maintain a balance between self-renewal and differentiation, has rarely been observed. Here we report the surprising finding that cultured mouse primary HPSC routinely generate pairs of daughter cells with 2 distinct phenotypes after a single round of cell division. Mouse bone marrow cells were cultured on chamber slides in the presence of stem cell factor (SCF). BrdU was added overnight to label dividing cells, and the cells were examined by immunofluorescence microscopy on day 2–4 of culture. In each BrdU+c-Kit+ divided cell doublet, c-Kit was invariably expressed in only 1 of the 2 daughter cells. In contrast, the other daughter cell was negative for c-Kit but positive for the asymmetric cell fate determinant Numb and mature myeloid markers Mac1, Gr1, M-CSFR and F4/80. Similarly, in each BrdU+Sca1+ cell doublet, 1 daughter cell was positive for the stem cell markers Sca1, c-Kit, CD150 and CD201, whereas the other cell was negative for these markers but positive for Numb and the mature myeloid markers. Analysis of 400 such doublets showed that the probability of HPSC undergoing asymmetric division was 99.5% (95% confidence interval 98–100%), indicating that asymmetric division in HPSC is in fact not rare but obligatory. In other model systems, it has been shown that activation of the atypical protein kinase C (aPKC)-Par6-Par3 cell polarity complex and realignment of the microtubule cytoskeleton precede asymmetric cell division. We asked whether similar steps are involved in the asymmetric division of HPSC. We found that c-Kit receptors, upon stimulation by SCF, rapidly capped at an apical pole next to the microtubule-organizing center, followed by redistribution to the same pole of the aPKC-Par6-Par3 complex and microtubule-stabilizing proteins APC, β-catenin, EB1 and IQGAP1. Strikingly, after cell division, the aPKC-Par6-Par3 complex and other polarity markers all partitioned only into the c-Kit+/Sca1+ daughter cell and not the mature daughter cell. The acetylated and detyrosinated forms of stabilized microtubules were also present only in the c-Kit+/Sca1+ cell, as were the Aurora A and Polo-like kinases, 2 mitotic kinases associated with asymmetric cell division. To understand how c-Kit activation triggers downstream polarization events, we studied the role of lipid rafts, cholesterol-enriched microdomains in the cell membrane that serve as organization centers of signaling complexes. These are enriched in phosphatidylinositol 4,5-bisphosphate and annexin 2, putative attachment sites for the aPKC-Par6-Par3 complex. We found that SCF stimulation led to coalescence of lipid raft components at the site of the c-Kit cap, and treatment with a wide range of inhibitors that blocked lipid raft formation abrogated polarization of the aPKC-Par6-Par3 complex and division of the c-Kit+/Sca1+ cells. Because obligatory asymmetric division in cultured HPSC would prevent a net increase in their number, we sought a way to bypass its mechanism. We tested whether inhibition of protein phosphatase 2A (PP2A), a physiological antagonist of aPKC, would enhance aPKC activity and promote self-renewal of HPSC. Treatment of cultured HPSC with okadaic acid or calyculin, 2 well-characterized PP2A inhibitors, increased the percent of c-Kit+/Sca1+ cells undergoing symmetric division from 0% to 23.3% (p<0.001). In addition, small colonies comprised of symmetrically dividing cells uniformly positive for Sca1, c-Kit, CD150 and CD201 were noted in the culture. To functionally characterize the effect of PP2A inhibition, mouse bone marrow cells were cultured in the absence or presence of PP2A inhibitors and transplanted into irradiated congenic mice in a competitive repopulation assay. At 4–8 weeks post-transplant, the donor engraftment rate increased from ∼1 in mice transplanted with untreated cells to >30% in mice transplanted with PP2A inhibitor-treated cells. This dramatic increase indicates that PP2A inhibition can effectively perturb the mechanism of asymmetric cell division and promote the self-renewal of HPSC. In summary, our data showed that obligatory asymmetric cell division works to maintain a strict balance between self-renewal and differentiation in HPSC and pharmacological manipulation of the cell polarity machinery could potentially be used to expand HPSC for clinical use. Disclosures: No relevant conflicts of interest to declare.

2018 ◽  
Author(s):  
Sara Molinari ◽  
David L. Shis ◽  
James Chappell ◽  
Oleg A. Igoshin ◽  
Matthew R. Bennett

AbstractA defining property of stem cells is their ability to differentiate via asymmetric cell division, in which a stem cell creates a differentiated daughter cell but retains its own phenotype. Here, we describe a synthetic genetic circuit for controlling asymmetrical cell division in Escherichia coli. Specifically, we engineered an inducible system that can bind and segregate plasmid DNA to a single position in the cell. Upon division, the co-localized plasmids are kept by one and only one of the daughter cells. The other daughter cell receives no plasmid DNA and is hence irreversibly differentiated from its sibling. In this way, we achieved asymmetric cell division though asymmetric plasmid partitioning. We also characterized an orthogonal inducible circuit that enables the simultaneous asymmetric partitioning of two plasmid species – resulting in pluripotent cells that have four distinct differentiated states. These results point the way towards engineering multicellular systems from prokaryotic hosts.


2017 ◽  
Vol 28 (11) ◽  
pp. 1530-1538 ◽  
Author(s):  
Anthony S. Eritano ◽  
Arturo Altamirano ◽  
Sarah Beyeler ◽  
Norma Gaytan ◽  
Mark Velasquez ◽  
...  

Asymmetric cell division is the primary mechanism to generate cellular diversity, and it relies on the correct partitioning of cell fate determinants. However, the mechanism by which these determinants are delivered and positioned is poorly understood, and the upstream signal to initiate asymmetric cell division is unknown. Here we report that the endoplasmic reticulum (ER) is asymmetrically partitioned during mitosis in epithelial cells just before delamination and selection of a proneural cell fate in the early Drosophila embryo. At the start of gastrulation, the ER divides asymmetrically into a population of asynchronously dividing cells at the anterior end of the embryo. We found that this asymmetric division of the ER depends on the highly conserved ER membrane protein Jagunal (Jagn). RNA inhibition of jagn just before the start of gastrulation disrupts this asymmetric division of the ER. In addition, jagn-deficient embryos display defects in apical-basal spindle orientation in delaminated embryonic neuroblasts. Our results describe a model in which an organelle is partitioned asymmetrically in an otherwise symmetrically dividing cell population just upstream of cell fate determination and updates previous models of spindle-based selection of cell fate during mitosis.


Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shaan N. Chhabra ◽  
Brian W. Booth

AbstractSomatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains “stemness” while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3573-3584 ◽  
Author(s):  
M. Gho ◽  
Y. Bellaiche ◽  
F. Schweisguth

The bristle mechanosensory organs of the adult fly are composed of four different cells that originate from a single precursor cell, pI, via two rounds of asymmetric cell division. Here, we have examined the pattern of cell divisions in this lineage by time-lapse confocal microscopy using GFP imaging and by immunostaining analysis. pI divided within the plane of the epithelium and along the anteroposterior axis to give rise to an anterior cell, pIIb, and a posterior cell, pIIa. pIIb divided prior to pIIa to generate a small subepithelial cell and a larger daughter cell, named pIIIb. This unequal division, oriented perpendicularly to the epithelium plane, has not been described previously. pIIa divided after pIIb, within the plane of the epithelium and along the AP axis, to produce a posterior socket cell and an anterior shaft cell. Then pIIIb divided perpendicularly to the epithelium plane to generate a basal neurone and an apical sheath cell. The small subepithelial pIIb daughter cell was identified as a sense organ glial cell: it expressed glial cell missing, a selector gene for the glial fate and migrated away from the sensory cluster along extending axons. We propose that mechanosensory organ glial cells, the origin of which was until now unknown, are generated by the asymmetric division of pIIb cells. Both Numb and Prospero segregated specifically into the basal glial and neuronal cells during the pIIb and pIIIb divisions, respectively. This revised description of the sense organ lineage provides the basis for future studies on how polarity and fate are regulated in asymmetrically dividing cells.


2001 ◽  
Vol 155 (4) ◽  
pp. 613-624 ◽  
Author(s):  
Frédéric Delbac ◽  
Astrid Sänger ◽  
Eva M. Neuhaus ◽  
Rolf Stratmann ◽  
James W. Ajioka ◽  
...  

In apicomplexan parasites, actin-disrupting drugs and the inhibitor of myosin heavy chain ATPase, 2,3-butanedione monoxime, have been shown to interfere with host cell invasion by inhibiting parasite gliding motility. We report here that the actomyosin system of Toxoplasma gondii also contributes to the process of cell division by ensuring accurate budding of daughter cells. T. gondii myosins B and C are encoded by alternatively spliced mRNAs and differ only in their COOH-terminal tails. MyoB and MyoC showed distinct subcellular localizations and dissimilar solubilities, which were conferred by their tails. MyoC is the first marker selectively concentrated at the anterior and posterior polar rings of the inner membrane complex, structures that play a key role in cell shape integrity during daughter cell biogenesis. When transiently expressed, MyoB, MyoC, as well as the common motor domain lacking the tail did not distribute evenly between daughter cells, suggesting some impairment in proper segregation. Stable overexpression of MyoB caused a significant defect in parasite cell division, leading to the formation of extensive residual bodies, a substantial delay in replication, and loss of acute virulence in mice. Altogether, these observations suggest that MyoB/C products play a role in proper daughter cell budding and separation.


2020 ◽  
Author(s):  
Elizabeth W. Kahney ◽  
Lydia Sohn ◽  
Kayla Viets-Layng ◽  
Robert Johnston ◽  
Xin Chen

ABSTRACTStem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that produced from a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combined histone labeling with DNA Oligopaints to distinguish old versus new histone distribution and visualize their inheritance patterns at single-gene resolution in asymmetrically dividing cells in vivo. This strategy can be widely applied to other biological contexts involving cell fate establishment during development or tissue homeostasis in multicellular organisms.


2010 ◽  
Vol 192 (16) ◽  
pp. 4134-4142 ◽  
Author(s):  
Jennifer R. Juarez ◽  
William Margolin

ABSTRACT The Min system regulates the positioning of the cell division site in many bacteria. In Escherichia coli, MinD migrates rapidly from one cell pole to the other. In conjunction with MinC, MinD helps to prevent unwanted FtsZ rings from assembling at the poles and to stabilize their positioning at midcell. Using time-lapse microscopy of growing and dividing cells expressing a gfp-minD fusion, we show that green fluorescent protein (GFP)-MinD often paused at midcell in addition to at the poles, and the frequency of midcell pausing increased as cells grew longer and cell division approached. At later stages of septum formation, GFP-MinD often paused specifically on only one side of the septum, followed by migration to the other side of the septum or to a cell pole. About the time of septum closure, this irregular pattern often switched to a transient double pole-to-pole oscillation in the daughter cells, which ultimately became a stable double oscillation. The splitting of a single MinD zone into two depends on the developing septum and is a potential mechanism to explain how MinD is distributed equitably to both daughter cells. Septal pausing of GFP-MinD did not require MinC, suggesting that MinC-FtsZ interactions do not drive MinD-septal interactions, and instead MinD recognizes a specific geometric, lipid, and/or protein target at the developing septum. Finally, we observed regular end-to-end oscillation over very short distances along the long axes of minicells, supporting the importance of geometry in MinD localization.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Dan Zhang ◽  
Yijia Wang ◽  
Shiwu Zhang

Asymmetric cell division is critical for generating cell diversity in low eukaryotic organisms. We previously have reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride demonstrate the ability to use an evolutionarily conserved process for renewal and fast reproduction, which is normally confined to simpler organisms. The budding yeast,Saccharomyces cerevisiae, which reproduces by asymmetric cell division, has long been a model for asymmetric cell division studies. PGCCs produce daughter cells asymmetrically in a manner similar to yeast, in that both use budding for cell polarization and cytokinesis. Here, we review the results of recent studies and discuss the similarities in the budding process between yeast and PGCCs.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Cuie Chen ◽  
Ryan Cummings ◽  
Aghapi Mordovanakis ◽  
Alan J Hunt ◽  
Michael Mayer ◽  
...  

Asymmetric stem cell division is a critical mechanism for balancing self-renewal and differentiation. Adult stem cells often orient their mitotic spindle to place one daughter inside the niche and the other outside of it to achieve asymmetric division. It remains unknown whether and how the niche may direct division orientation. Here we discover a novel and evolutionary conserved mechanism that couples cell polarity to cell fate. We show that the cytokine receptor homolog Dome, acting downstream of the niche-derived ligand Upd, directly binds to the microtubule-binding protein Eb1 to regulate spindle orientation in Drosophila male germline stem cells (GSCs). Dome’s role in spindle orientation is entirely separable from its known function in self-renewal mediated by the JAK-STAT pathway. We propose that integration of two functions (cell polarity and fate) in a single receptor is a key mechanism to ensure an asymmetric outcome following cell division.


2018 ◽  
Vol 217 (11) ◽  
pp. 3785-3795 ◽  
Author(s):  
Zsolt G. Venkei ◽  
Yukiko M. Yamashita

The asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity. Recent studies have expanded our knowledge on the mechanisms of asymmetric cell divisions, revealing the previously unappreciated complexity in setting up the cellular and/or environmental asymmetry, ensuring binary outcomes of the fate determination. In this review, we summarize recent progress in understanding the mechanisms and regulations of asymmetric stem cell division.


Sign in / Sign up

Export Citation Format

Share Document