Double-layer fabrication of cubic-manganites/hexagonal-ZnO on various substrates by ion beam sputtering, and variable electrical property

2014 ◽  
Vol 53 (5S1) ◽  
pp. 05FB10 ◽  
Author(s):  
Akira Okada ◽  
Kenichi Uehara ◽  
Miyoshi Yokura ◽  
Masahito Matsui ◽  
Katsuhiko Inaba ◽  
...  
2005 ◽  
Vol 887 ◽  
Author(s):  
Hong Zhu ◽  
Masanori Okada ◽  
Hidetaka Nakashima ◽  
Ajay K. Sarkar ◽  
Hirofumi Yamasaki ◽  
...  

ABSTRACTDouble Layer Processes of LBMO/YBCO and Crystalline Degradations Oxide microwave devices will be widely expected in mobile communication system in the near future in the world. Superconducting YBa2Cu3Ox (YBCO) thin films are most advisable for microwave filter devices due to their very low surface resistance. Next generation devices are tunable microwave filters formed by double layers consisting of YBCO and ferromagnetic manganites such as La(Ba)MnO3 (LBMO).In order to complete excellent double layers, we must first obtain proper techniques to fabricate perfect a/c-phases of YBCO and excellent crystalline LBMO single layers on substrate at low substrate temperatures (Ts), and then fabricate their double layers. We have tried an ion beam sputtering (IBS), then now we can control the perfect a-c orientation growths of YBCO. The minimum surface roughness is 1 nm for the c-phase and 0.3 nm for the a-phase.Excellent crystalline thin films of LBMO can be grown by IBS with controlling Ts, oxygen pressure (Po) and oxygen molecular or plasma supply on MgO and LAO substrates. It can be grown down to 480 deg C. The minimum rocking half-width is 0.01 deg, and the minimum surface roughness is 0.8 nm. As-grown LBMO film shows different metal-insulator transition and Curier temperatures. The results are interpreted by a phase separation and magnetostriction.The double layers of YBCO on LBMO and LBMO on YBCO were fabricated by IBS. In YBCO/LBMO, the excellent a/c-YBCO can be grown on the underlying LBMO at 600-650 °C. The crystallinity of overlying YBCO is nearly the same with that of the single layers on MgO and LAO. The mosaicity of YBCO is much better than that of the single layers on MgO and LAO. It is noticed that the underlying LBMO crystallinity can be improved, and the mosaicity is not degraded after the double layer deposition. A n inferiority is that the double layer surface is much degraded. Then we should fabricate the smooth underlying LBMO. In LBMO/YBCO, the excellent crystalline LBMO can be grown on the underlying a/c-YBCO at 650-700 deg C. The better crystalline LBMO grows on the better crystalline YBCO. The LBMO/a-YBCO clearly shows XRD peak separations while the LBMO/c-YBCO shows peak overlappings. The crystallinity of overlying LBMO is slightly poorer that that of the single layers on LAO. The mosaicity of LBMO is much poorer than that of the single layers of LBMO on LAO, but is almost the same with that of the underlying YBCO. It should be noticed that the crystallinity of underlying YBCO is degraded considerably after the double layer deposition. Then we should deposite the overlying LBMO at low temperatures. However a superiority is that the double layer surface is not degraded or rather improved. Now we are estimating time-dependence of the crystalline degradations on the single and double layers. YBCO crystallinity is easily degraded with time but LBMO is very stable. Then LBMO/YBCO is advisable in terms of a long term degradation.


2013 ◽  
Vol 873 ◽  
pp. 479-485
Author(s):  
Xi Zhou ◽  
Chong Wang ◽  
Jie Yang ◽  
Ying Xia Jin ◽  
Yu Yang

A series of double-layer Ge/Si quantum dots are prepared by ion beam sputtering deposition (IBSD) on Si (100) substrates. The influences of deposition temperature and thickness of Si spacer-layer on the microstructure of double-layer Ge/Si quantum dots were characterized by using Atomic force microscopy (AFM) and Raman spectra technique. The results indicate that the density of the second layer islands firstly increases and then decreases with increasing the growth temperature of Si spacer-layers. In addition, increasing the thickness of Si spacer-layer, the islands merger phenomenon disappears. When the deposition thickness is larger than 40 nm, the islands on the upper-layer show the same features with the buried islands. The mechanism of three-factor-interactions of nanoislands is proposed to explain these phenomena, and our results can be used as a guidance to obtain optimum IBSD growth process for Ge/Si quantum-dot superlattices.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 511-515 ◽  
Author(s):  
HONG ZHU ◽  
MASANORI OKADA ◽  
ATSUSHI KAMIYA ◽  
AJAY KRISHNO SARKAR ◽  
MASAHITO MATSUI ◽  
...  

( La , Sr ) MnO 3 (LSMO) single-layer and LSMO/YBCO double-layer films have been grown on LAO and MgO substrates using ion beam sputtering. For LSMO single-layer films, the highly epitaxial films can be grown at lower substrate temperatures down to 500°C. The epitaxy of the films, which is degraded with increasing TS, can be restored by supply of plasma oxygen. Smaller lattice mismatch of LSMO on LAO gives two-dimensional step-and-terrace type growth, whereas on MgO grain type growth is observed due to larger mismatch. For the double-layer films, LSMO layer can be grown epitaxially on a-oriented YBCO underlayer, but a part of the underlying a-YBCO is changed into c-YBCO during the deposition of overlayer. For c-YBCO underlayer, a part of the underlying c-YBCO is changed into (110)-oriented phase after the deposition of overlayer. Then it is necessary to deposit the overlayer at lower temperatures.


2012 ◽  
Vol 1454 ◽  
pp. 69-74
Author(s):  
Kenichi Uehara ◽  
Sanapa Lakshmi Reddy ◽  
Akira Okada ◽  
Miyoshi Yokura ◽  
Shintaro Kobayashi ◽  
...  

ABSTRACTHexagonal ZnO was grown on hexagonal (001) sapphire substrate, then cubic La(Sr)MnO3(LSMO) was grown on ZnO underlayer by ion beam sputtering at substrate temperatures of 550-750°C to obtain double-layer of LSMO/ZnO. Out-of-plane (001) oriented ZnO was grown with in-plane orientation of [10-10](0001)ZnO//[11-20](0001)sapphire. Mixed phase of LSMO with out-of-plane (001), (110) and (111) orientations was grown on (001) ZnO usually. However each single phase of LSMO could be grown by controlling deposition conditions. The LSMO grains have their in-plane orientations of [110](110)LSMO //[10-10](0001)ZnO and [110](111)LSMO//[11-20](0001)ZnO.


Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


Author(s):  
A.E.M. De Veirman ◽  
F.J.G. Hakkens ◽  
W.M.J. Coene ◽  
F.J.A. den Broeder

There is currently great interest in magnetic multilayer (ML) thin films (see e.g.), because they display some interesting magnetic properties. Co/Pd and Co/Au ML systems exhibit perpendicular magnetic anisotropy below certain Co layer thicknesses, which makes them candidates for applications in the field of magneto-optical recording. It has been found that the magnetic anisotropy of a particular system strongly depends on the preparation method (vapour deposition, sputtering, ion beam sputtering) as well as on the substrate, underlayer and deposition temperature. In order to get a better understanding of the correlation between microstructure and properties a thorough cross-sectional transmission electron microscopy (XTEM) study of vapour deposited Co/Pd and Co/Au (111) MLs was undertaken (for more detailed results see ref.).The Co/Pd films (with fixed Pd thickness of 2.2 nm) were deposited on mica substrates at substrate temperatures Ts of 20°C and 200°C, after prior deposition of a 100 nm Pd underlayer at 450°C.


2003 ◽  
Vol 762 ◽  
Author(s):  
Z.B. Zhou ◽  
G.M. Hadi ◽  
R.Q. Cui ◽  
Z.M. Ding ◽  
G. Li

AbstractBased on a small set of selected publications on the using of nanocrystalline silicon films (nc-Si) for solar cell from 1997 to 2001, this paper reviews the application of nc-Si films as intrinsic layers in p-i-n solar cells. The new structure of nc-Si films deposited at high chamber pressure and high hydrogen dilution have characters of nanocrystalline grains with dimension about several tens of nanometer embedded in matrix of amorphous tissue and a high volume fraction of crystallinity (60~80%). The new nc-Si material have optical gap of 1.89 eV. The efficiency of this single junction solar cell reaches 8.7%. This nc-Si layer can be used not only as an intrinsic layer and as a p-type layer. Also nanocrystalline layer may be used as a seed layer for the growth of polycrystalline Si films at a low temperature.We used single ion beam sputtering methods to synthesize nanocrystalline silicon films successfully. The films were characterized with the technique of X-ray diffraction, Atomic Force Micrographs. We found that the films had a character of nc-amorphous double phase structure. Conductivity test at different temperatures presented the transportation of electrons dominated by different mechanism within different temperature ranges. Photoconductivity gains of the material were obtained in our recent investigation.


2003 ◽  
Vol 775 ◽  
Author(s):  
Suk-Ho Choi ◽  
Jun Sung Bae ◽  
Kyung Jung Kim ◽  
Dae Won Moon

AbstractSi/SiO2 multilayers (MLs) have been prepared under different deposition temperatures (TS) by ion beam sputtering. The annealing at 1200°C leads to the formation of Si nanocrystals in the Si layer of MLs. The high resolution transmission electron microscopy images clearly demonstrate the existence of Si nanocrystals, which exhibit photoluminescence (PL) in the visible range when TS is ≥ 300°C. This is attributed to well-separation of nanocrystals in the higher-TS samples, which is thought to be a major cause for reducing non-radiative recombination in the interface between Si nanocrystal and surface oxide. The visible PL spectra are enhanced in its intensity and are shifted to higher energy by increasing TS. These PL behaviours are consistent with the quantum confinement effect of Si nanocrystals.


1996 ◽  
Vol 8 (1/2) ◽  
pp. 27-28
Author(s):  
Mitsuhiro WADA ◽  
Yoshihito MATSUMURA ◽  
Hirohisa UCHIDA ◽  
Haru-Hisa UCHIDA ◽  
Hideo KANEKO

Sign in / Sign up

Export Citation Format

Share Document