The effect of Neel relaxation on the properties of the third harmonic signal of magnetic nanoparticles for use in narrow-band magnetic nanoparticle imaging

2014 ◽  
Vol 53 (10) ◽  
pp. 103002 ◽  
Author(s):  
Keiji Enpuku ◽  
Shi Bai ◽  
Aiki Hirokawa ◽  
Kazuhiro Tanabe ◽  
Teruyoshi Sasayama ◽  
...  
1992 ◽  
Vol 247 ◽  
Author(s):  
D. Guo ◽  
S. Mazumdar ◽  
G. I. Stegeman ◽  
M. Cha ◽  
D. Neher ◽  
...  

The third order nonlinear optical properties of conjugated polymers have been considered promising since the 1970s when Sauteret et al reported large non-resonant values in PTS.[1] Although it is well-understood that the physical origin of the nonlinearities is due to the delocalization of the π-electrons, the details, and how best to calculate them have been the focus of a continuing theoretical dialogue. Until recently, experimental investigations of nonlinearities have been limited to only a few wavelengths. Now third harmonic generation (THG), which accesses only the electronic nonlinearities, can be performed over wide spectral ranges, for example from 500 to 2000 nm. The resulting third harmonic wavelength typically spans the electronic molecular transitions associated with the nonlinearities. By measuring the spectral distribution of both the amplitude and phase of the third harmonic signal, the dominant transitions (between the“essential states”) contributing to the nonlinearity can be identified. Such information is most useful for comparing with theories in which the oscillator strengths (transition dipole moments) for the various molecular transitions are calculated.


2015 ◽  
Vol 39 (5) ◽  
pp. 216-219 ◽  
Author(s):  
Shi Bai ◽  
Aiki Hirokawa ◽  
Kazuhiro Tanabe ◽  
Teruyoshi Sasayama ◽  
Takashi Yoshida ◽  
...  

2021 ◽  
Vol 2081 (1) ◽  
pp. 012003
Author(s):  
V O Gladyshev ◽  
E A Sharandin ◽  
A V Skrabatun ◽  
P P Nikolaev

Abstract Parametric interaction of electromagnetic and gravitational waves with the radiation generation at the third harmonic wavelength is one of the ways to detect gravitational interaction in a material medium. To implement the effect in question, superstrong fields must be used, but in this case competing nonlinear processes arise, leading to the generation of the third harmonic as a result of laser radiation filamentation. This paper investigates the characteristics of the radiation recorded for femtosecond (250 fs) laser pulses with a wavelength of λ = 1032 nm focused in air. The threshold pump power made it possible to observe the formation of a filament with concomitant generation of narrow-band radiation at the focus of the lens at the third harmonic wavelength λ = 344 nm. The research presents spectral and spatial dependences of ultraviolet radiation (λ = 344 nm) at pumping power of infrared radiation (λ = 1032 nm) of 500 mW. Energy dependences of the third harmonic generation efficiency in the power range from 150 to 1750 mW are obtained.


2014 ◽  
Vol 61 (S1) ◽  
pp. S133-S136
Author(s):  
N. B. Othman ◽  
T. Tsubaki ◽  
D. Kitahara ◽  
T. Yoshida ◽  
K. Enpuku

2013 ◽  
Vol 52 (8R) ◽  
pp. 087001 ◽  
Author(s):  
Keiji Enpuku ◽  
Takafumi Morishige ◽  
Takuro Mihaya ◽  
Takashi Miyazai ◽  
Masaaki Matsuo ◽  
...  

Radiotekhnika ◽  
2021 ◽  
pp. 99-104
Author(s):  
V.G. Kryzhanovskyi ◽  
S.P. Serhiienko ◽  
D.V. Chernov ◽  
V.V. Kryzhanovsky

The widespread use of the NFC technology (Near Field Communication) arouses interest to various security aspects. There are known examples of information exchange with card at a distance greater than standard 5-10 cm. It is also interesting to use signals of higher harmonics, which potentially may be radiated in the form of electromagnetic waves, rather than exists as a magnetic field of scattering. In this work, the radiation of third harmonic by card of standard ISO 14443-3А with the fundamental frequency 13.56 MHZ for various excitation modes using the RFID-RC522 reader, smartphone Sony Xperia Z5 Premium, and continuous 10% amplitude modulated 13.56 MHz signal from generator with the subcarrier of imitated smart card response 847.5 kHz was investigated. The card response at third harmonic was simulated in circuit analysis software. Both simulation and experiment proved, that the third harmonic with its side frequencies 40,68 ± 0,8475 MHz have the highest level after the fundamental. To receive the third harmonic signal, the resonant loop antenna in the form of ring vibrator loaded on capacitor was used. This allows the sizes of the received system to be reduced, but the problem of complex field structure in the near-field zone remains. Due to narrow bandwidth of the receiver antenna, the registration of card response signal was complicated. The experiments with three methods of signal generation proved, that third-harmonic signal is registered at the distance more than 1.5m, which may pose a threat for contactless smart-cards transactions security. At the same time, the influence of high level of noise at such a distance may cause difficulties to decode the short-duration signals, which requires further study.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3194
Author(s):  
Adrian Petris ◽  
Petronela Gheorghe ◽  
Tudor Braniste ◽  
Ion Tiginyanu

The ultrafast third-order optical nonlinearity of c-plane GaN crystal, excited by ultrashort (fs) high-repetition-rate laser pulses at 1550 nm, wavelength important for optical communications, is investigated for the first time by optical third-harmonic generation in non-phase-matching conditions. As the thermo-optic effect that can arise in the sample by cumulative thermal effects induced by high-repetition-rate laser pulses cannot be responsible for the third-harmonic generation, the ultrafast nonlinear optical effect of solely electronic origin is the only one involved in this process. The third-order nonlinear optical susceptibility of GaN crystal responsible for the third-harmonic generation process, an important indicative parameter for the potential use of this material in ultrafast photonic functionalities, is determined.


2021 ◽  
Author(s):  
Emily Sheridan ◽  
Silvia Vercellino ◽  
Lorenzo Cursi ◽  
Laurent Adumeau ◽  
James A. Behan ◽  
...  

We describe how magnetic nanoparticles can be used to study intracellular nanoparticle trafficking, and how magnetic extraction may be integrated with downstream analyses to investigate nanoscale decision-making events.


2021 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Ka Young Kim ◽  
Keun-A Chang

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.


Sign in / Sign up

Export Citation Format

Share Document