Investigation of giant step bunching in 4H-SiC homoepitaxial growth: Proposal of cluster effect model

2015 ◽  
Vol 54 (6) ◽  
pp. 061301 ◽  
Author(s):  
Yuuki Ishida ◽  
Sadafumi Yoshida
2010 ◽  
Vol 645-648 ◽  
pp. 543-546 ◽  
Author(s):  
Yuuki Ishida ◽  
Tetsuo Takahashi ◽  
Hajime Okumura ◽  
Kazuo Arai ◽  
Sadafumi Yoshida

In this study, we investigated the cluster effect on the occurrence of giant step bunching. We generated carbon clusters on 4H-SiC (0001) surfaces by thermal decomposition of SiC in an Ar atmosphere and controlled the surface concentrations of the clusters by adding H2 gas. We found the boundaries between surfaces with and without giant steps to show Arrhenius-type behavior. This behavior agreed with our predictions deduced from a chemical reaction model that takes the cluster effect into account, suggesting that giant step bunching is attributable to the formation of clusters on SiC.


2014 ◽  
Vol 778-780 ◽  
pp. 183-186 ◽  
Author(s):  
Yuuki Ishida ◽  
Sadafumi Yoshida

We have developed the computer simulation including cluster effect and Schwoebel effect and investigated the conditions generating GSB using the simulation. We have demonstrated that the simulation developed can reproduce GSB. We have found for the occurence of GSB that there exists a threshold value of the surplus flux rate of Si-or C-source gases not contributing to growth, which depends on the flux rate of each source gas, namely the boundary between with and without GSB. It is noted that this boundary does not depend on the off-angle of substrates. We have also found the mechanism for explaining the occurrence of wavy surface morphplogy.


2021 ◽  
Vol 570 ◽  
pp. 151266
Author(s):  
Azza Hadj Youssef ◽  
Gitanjali Kolhatkar ◽  
Ifeanyichukwu C. Amaechi ◽  
Rajesh Katoch ◽  
Yoandris González ◽  
...  
Keyword(s):  

2010 ◽  
Vol 645-648 ◽  
pp. 99-102 ◽  
Author(s):  
Kazutoshi Kojima ◽  
Sachiko Ito ◽  
Junji Senzaki ◽  
Hajime Okumura

We have carried out detailed investigations of 4H-SiC homoepitaxial growth on vicinal off-angled Si-face substrates. We found that the surface morphology of the substrate just after in-situ H2 etching was also affected by the value of the vicinal-off angle. Growth conditions consisting of a low C/Si ratio and a low growth temperature were effective in suppressing macro step bunching at the grown epilayer surface. We also demonstrated epitaxial growth without step bunching on a 2-inch 4H-SiC Si-face substrate with a vicinal off angle of 0.79o. Ni Schottky barrier diodes fabricated on an as-grown epilayer had a blocking voltage above 1000V and a leakage current of less than 5x10-7A/cm2. We also investigated the propagation of basal plane dislocation from the vicinal off angled substrate into the epitaxial layer.


2014 ◽  
Vol 778-780 ◽  
pp. 222-225 ◽  
Author(s):  
Yuuki Ishida ◽  
Sadafumi Yoshida

Trapezoid-shape (T-S) defects on epilayer surfaces, which include two kinds of the giant step bunching (GSB), are one of killer defects for MOSFETs. We have investigated the generation mechanism of the two GSBs using "step kinetics simulator" we developed. The simulator has reproduced the behavior of the GSBs. Based on results from the simulation, we have discussed the generation mechanism of the two GSBs.


2010 ◽  
Vol 518 (6) ◽  
pp. S159-S161 ◽  
Author(s):  
M. Camarda ◽  
A. La Magna ◽  
A. Severino ◽  
F. La Via

2008 ◽  
Vol 600-603 ◽  
pp. 473-476 ◽  
Author(s):  
Yuuki Ishida ◽  
Tetsuo Takahashi ◽  
Hajime Okumura ◽  
Kazuo Arai ◽  
Sadafumi Yoshida

To elucidate the origin of giant step bunching on 4˚ off-axis 4H-SiC (0001) faces, we carried out hydrogen etching and epitaxial growth under various conditions. We found that giant step bunching occurs during hydrogen etching and epitaxial growth at extremely low or high C/Si ratios, i.e., with an excessive supply of SiH4 or C3H8. From these results, we have proposed that the origins of giant step bunching are asymmetry in the step kinetics in etching and Si or C cluster generation on terraces during growth.


2015 ◽  
Vol 821-823 ◽  
pp. 181-184 ◽  
Author(s):  
Ji Chao Hu ◽  
Yu Ming Zhang ◽  
Ren Xu Jia ◽  
Yue Hu Wang ◽  
Bin Xin

Step-bunching and triangular defects are significant problems in achieving higher growth rate 4H-SiC epilayers in a horizontal hot wall CVD reactor using a standard non-chlorinated chemistry of silane-propane-hydrogen on 4°off-axis substrates. In this work, the impact of growth pressure on generation of step-bunching and triangular defects and the correlations between the surface roughness and the formation of defects were investigated. It has been found that the impact of growth pressure on concentration of the triangle defects and surface roughness is obviously different. An overall reduction of defects was observed with decreasing growth pressure while the surface roughness increased. The increased adatom surface mobility in low pressure range and minimization of surface free energy are the main reasons for the phenomenon above. High Resolution X-Ray Diffraction (HRXRD) indicated that the structural quality of 4H-SiC epilayers performed at low pressure was higher than that obtained at high pressure.


2011 ◽  
Vol 605 (7-8) ◽  
pp. 838-843 ◽  
Author(s):  
Arnold Alguno ◽  
Sergey N. Filimonov ◽  
Maki Suemitsu

Sign in / Sign up

Export Citation Format

Share Document