Correlation between Atomic-Scale Structures and Electronic Properties at Compound Semiconductor Layered Interfaces

1987 ◽  
Author(s):  
Hideki HASEGAWA ◽  
Hideo OHNO ◽  
Tetsuya HAGA ◽  
Yutaka ABE ◽  
Heishichirou TAKAHASHI ◽  
...  
2006 ◽  
Author(s):  
Douglas C. Hall ◽  
Patrick J. Fay ◽  
Thomas H. Kosel ◽  
Bruce A. Bunker ◽  
Russell D. Dupuis

1992 ◽  
Vol 260 ◽  
Author(s):  
L. J. Brillson ◽  
I. M. Vitomirov ◽  
A. Raisanen ◽  
S. Chang ◽  
R. E. Viturro ◽  
...  

ABSTRACTThe influence of metallization and processing on Schottky barrier formation provides the basis for one of several fruitful approaches for controlling junction electronic properties. Interface cathodo-and photoluminescence measurements reveal that electrically-active deep levels form on GaAs(100) surfaces and metal interfaces which depend on thermally-driven surface stoichiometry and reconstruction, chemical interaction, as well as surface misorientation and bulk crystal quality. These interface states are discrete and occur at multiple gap energies which can account for observed band bending. Characteristic trends in such deep level emission with interface processing provide guides for optimizing interface electronic behavior. Correspondingly, photoemission and internal photoemission spectroscopy measurements indicate self-consistent changes in barrier heights which may be heterogeneous and attributable to interface chemical reactions observed on a monolayer scale. These results highlight the multiple roles of atomic-scale structure in forming macroscopic electronic properties of compound semiconductor-metal junctions.


1995 ◽  
Vol 380 ◽  
Author(s):  
Craig T. Salling

ABSTRACTThe ability to create atomic-scale structures with the scanning tunneling microscope (STM) plays an important role in the development of a future nanoscale technology. I briefly review the various modes of STM-based fabrication and atomic manipulation. I focus on using a UHV-STM to directly pattern the Si(001) surface by atomic manipulation at room temperature. By carefully adjusting the tip morphology and pulse voltage, a single atomic layer can be removed from the sample surface to define features one atom deep. Segments of individual dimer rows can be removed to create structures with atomically straight edges and with lateral features as small as one dimer wide. Trenches ∼3 nm wide and 2–3 atomic layers deep can be created with less stringent control of patterning parameters. Direct patterning provides a straightforward route to the fabrication of nanoscale test structures under UHV conditions of cleanliness.


Nano Letters ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 6030-6036 ◽  
Author(s):  
Shuai Zhang ◽  
Lei Gao ◽  
Aisheng Song ◽  
Xiaohu Zheng ◽  
Quanzhou Yao ◽  
...  

2019 ◽  
Vol 116 (49) ◽  
pp. 24452-24456 ◽  
Author(s):  
Shuai Zhang ◽  
Yuan Hou ◽  
Suzhi Li ◽  
Luqi Liu ◽  
Zhong Zhang ◽  
...  

Controlling, and in many cases minimizing, friction is a goal that has long been pursued in history. From the classic Amontons–Coulomb law to the recent nanoscale experiments, the steady-state friction is found to be an inherent property of a sliding interface, which typically cannot be altered on demand. In this work, we show that the friction on a graphene sheet can be tuned reversibly by simple mechanical straining. In particular, by applying a tensile strain (up to 0.60%), we are able to achieve a superlubric state (coefficient of friction nearly 0.001) on a suspended graphene. Our atomistic simulations together with atomically resolved friction images reveal that the in-plane strain effectively modulates the flexibility of graphene. Consequently, the local pinning capability of the contact interface is changed, resulting in the unusual strain-dependent frictional behavior. This work demonstrates that the deformability of atomic-scale structures can provide an additional channel of regulating the friction of contact interfaces involving configurationally flexible materials.


2012 ◽  
Vol 20 (4) ◽  
pp. 44-48 ◽  
Author(s):  
E. A. Marquis ◽  
P.-Pa Choi ◽  
F. Danoix ◽  
K. Kruska ◽  
S. Lozano-Perez ◽  
...  

Atom probe tomography (APT) has significantly contributed to our understanding and development of structural materials through the detailed analysis of solute behavior, cluster formation, precipitate evolution, and interfacial and grain boundary chemistry. Whether one is concerned with light alloys, Ni-based superalloys, or steels, the design objectives are similar: developing alloys with optimum properties (strength, toughness, ductility, fatigue resistance, creep strength) through controlled precipitation, grain structure, solute state, and combination of phases. Performance in service, through microstructural stability and resistance to degradation, is also a major design criterion for the development of novel materials.


Sign in / Sign up

Export Citation Format

Share Document