New Insights into the Atomic-Scale Structures and Behavior of Steels

2012 ◽  
Vol 20 (4) ◽  
pp. 44-48 ◽  
Author(s):  
E. A. Marquis ◽  
P.-Pa Choi ◽  
F. Danoix ◽  
K. Kruska ◽  
S. Lozano-Perez ◽  
...  

Atom probe tomography (APT) has significantly contributed to our understanding and development of structural materials through the detailed analysis of solute behavior, cluster formation, precipitate evolution, and interfacial and grain boundary chemistry. Whether one is concerned with light alloys, Ni-based superalloys, or steels, the design objectives are similar: developing alloys with optimum properties (strength, toughness, ductility, fatigue resistance, creep strength) through controlled precipitation, grain structure, solute state, and combination of phases. Performance in service, through microstructural stability and resistance to degradation, is also a major design criterion for the development of novel materials.

2007 ◽  
Vol 102 (3) ◽  
pp. 033912 ◽  
Author(s):  
A. Grenier ◽  
R. Lardé ◽  
E. Cadel ◽  
F. Vurpillot ◽  
J. Juraszek ◽  
...  

2016 ◽  
Vol 22 (S3) ◽  
pp. 1534-1535
Author(s):  
Isabelle Martin ◽  
Robert Estivill ◽  
Marc Juhel ◽  
Adeline Grenier ◽  
Ty J. Prosa ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 2366-2369 ◽  
Author(s):  
Feng Zai Tang ◽  
Talukder Alam ◽  
Michael P. Moody ◽  
Baptiste Gault ◽  
Julie M. Cairney

Atom probe tomography provides compositional information in three dimensions at the atomic scale, and is therefore extremely suited to the study of nanocrystalline materials. In this paper we present atom probe results from the investigation of nanocomposite TiSi¬Nx coatings and nanocrystalline Al. We address some of the major challenges associated with the study of nanocrystalline materials, including specimen preparation, visualisation, common artefacts in the data and approaches to quantitative analysis. We also discuss the potential for the technique to relate crystallographic information to the compositional maps.


2015 ◽  
Vol 21 (S3) ◽  
pp. 1315-1316 ◽  
Author(s):  
Mukesh Bachhav ◽  
Yan Dong ◽  
Philip Skemer ◽  
Emmanuelle A. Marquis

1995 ◽  
Vol 380 ◽  
Author(s):  
Craig T. Salling

ABSTRACTThe ability to create atomic-scale structures with the scanning tunneling microscope (STM) plays an important role in the development of a future nanoscale technology. I briefly review the various modes of STM-based fabrication and atomic manipulation. I focus on using a UHV-STM to directly pattern the Si(001) surface by atomic manipulation at room temperature. By carefully adjusting the tip morphology and pulse voltage, a single atomic layer can be removed from the sample surface to define features one atom deep. Segments of individual dimer rows can be removed to create structures with atomically straight edges and with lateral features as small as one dimer wide. Trenches ∼3 nm wide and 2–3 atomic layers deep can be created with less stringent control of patterning parameters. Direct patterning provides a straightforward route to the fabrication of nanoscale test structures under UHV conditions of cleanliness.


2018 ◽  
Vol 33 (23) ◽  
pp. 4018-4030 ◽  
Author(s):  
Baptiste Gault ◽  
Andrew J. Breen ◽  
Yanhong Chang ◽  
Junyang He ◽  
Eric A. Jägle ◽  
...  

Abstract


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Kristiane A. K. Rusitzka ◽  
Leigh T. Stephenson ◽  
Agnieszka Szczepaniak ◽  
Lothar Gremer ◽  
Dierk Raabe ◽  
...  

2008 ◽  
Vol 16 (4) ◽  
pp. 42-47 ◽  
Author(s):  
Brian P. Gorman ◽  
David Diercks ◽  
Norman Salmon ◽  
Eric Stach ◽  
Gonzalo Amador ◽  
...  

Atom probe tomography has primarily been used for atomic scale characterization of high electrical conductivity materials. A high electrical field applied to needle-shaped specimens evaporates surface atoms, and a time of flight measurement determines each atom's identity. A 2-dimensional detector determines each atom's original position on the specimen. When repeated successively over many surface monolayers, the original specimen can be reconstructed into a 3-dimensional representation. In order to have an accurate 3-D reconstruction of the original, the field required for atomic evaporation must be known a-priori. For many metallic materials, this evaporation field is well characterized, and 3-D reconstructions can be achieved with reasonable accuracy.


Nano Letters ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 6030-6036 ◽  
Author(s):  
Shuai Zhang ◽  
Lei Gao ◽  
Aisheng Song ◽  
Xiaohu Zheng ◽  
Quanzhou Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document