Process-Dependent Electronic Structure at Metallized GaAs Contacts

1992 ◽  
Vol 260 ◽  
Author(s):  
L. J. Brillson ◽  
I. M. Vitomirov ◽  
A. Raisanen ◽  
S. Chang ◽  
R. E. Viturro ◽  
...  

ABSTRACTThe influence of metallization and processing on Schottky barrier formation provides the basis for one of several fruitful approaches for controlling junction electronic properties. Interface cathodo-and photoluminescence measurements reveal that electrically-active deep levels form on GaAs(100) surfaces and metal interfaces which depend on thermally-driven surface stoichiometry and reconstruction, chemical interaction, as well as surface misorientation and bulk crystal quality. These interface states are discrete and occur at multiple gap energies which can account for observed band bending. Characteristic trends in such deep level emission with interface processing provide guides for optimizing interface electronic behavior. Correspondingly, photoemission and internal photoemission spectroscopy measurements indicate self-consistent changes in barrier heights which may be heterogeneous and attributable to interface chemical reactions observed on a monolayer scale. These results highlight the multiple roles of atomic-scale structure in forming macroscopic electronic properties of compound semiconductor-metal junctions.

1983 ◽  
Vol 25 ◽  
Author(s):  
W. G. Petro ◽  
T. Kendelewicz ◽  
I. A. Babalola ◽  
I. Lindau ◽  
W. E. Spicer

ABSTRACTRoom-temperature interfacial reactions at the Ag/InP (110) interface have been studied using soft x-ray photoemission spectroscopy of the In 4d and P 2p core levels. For low Ag coverages (less than 1 monolayer (ML)) no measurable change in core level shapes is observed, and the shift in core level position is due solely to band bending. At high Ag coverages (up to 72 ML) we observe dissociated In metal, P atoms near the surface, and Ag clustering. Fermi level movement is deduced from these spectra using a deconvolution technique, and pinning positions of 0.40 ± 0.05 eV below the conduction-band minimum for n-type and 0.5 ± 0.l eV above the valence-band maximum for p-type are found. These positions are in close agreement with calculations of native defect levels.


1993 ◽  
Vol 320 ◽  
Author(s):  
B.G. Svensson

ABSTRACTThe electrical properties of Cu/Si(100) and Cu3Si/Si(100) interfaces have been studied using both n- and p-type silicon samples. Current-voltage and capacitance-voltage measurements were performed in the temperature range 80-295 K in order to monitor Schottky barrier formation and electrical carrier concentration profiles. Deep-level transient spectroscopy was employed to observe Cu-related energy levels in the forbidden band gap of Si, and different ion beam analysis techniques were applied to study the interfacial reaction between Cu and Si. Emphasis is put on determination of Schottky barrier heights and their variation with temperature, dopant passivation by Cu atoms and interaction of Cu with irradiation-induced point defects in silicon.


1989 ◽  
Vol 148 ◽  
Author(s):  
L. J. Brillson ◽  
R. E. Viturro ◽  
S. Chang ◽  
J. L. Shaw ◽  
C. Mailhiot ◽  
...  

ABSTRACTRecent studies of interface states and band bending at metal / III-V compound semiconductor interfaces reveal that these junctions are much more controllable and predictable than commonly believed. Soft x-ray photoemission spectroscopy studies demonstrate a wide range of band bending for metals on many III-V compounds, including GaAs. Cathodoluminescence spectroscopy measurements show that discrete states form at the microscopic junction which can have a dominant effect on the band bending properties. Internal photoemission measurements confirm the bulk barrier heights inferred by photoemission methods. After separating out surface chemical and bulk crystal quality effects, one finds simple, predictive barrier height variations which follow classical Schottky behavior.


2018 ◽  
Vol 232 (5-6) ◽  
pp. 893-905 ◽  
Author(s):  
Elena Echeverría ◽  
George Peterson ◽  
Bin Dong ◽  
Simeon Gilbert ◽  
Adeola Oyelade ◽  
...  

Abstract We have used X-ray photoemission spectroscopy to study the interaction of gold (Au) with novel boron carbide-based semiconductors grown by plasma-enhanced chemical vapor deposition (PECVD). Both n- and p-type films have been investigated and the PECVD boron carbides are compared to those containing aromatic compounds. In the case of the p-type semiconducting PECVD hydrogenated boron carbide samples, the binding energy of the B(1s) core level shows a shift to higher binding energies as the Au is deposited, an indication of band bending and possibly Schottky barrier formation. In the case of the n-type boron carbide semiconductors the interaction at the interface is more typical of an ohmic contact. Addition of the aromatic compounds increases the change in binding energies on both n-type and p-type PECVD boron carbide semiconductors, and the gold appears to diffuse into the PECVD boron carbides alloyed with aromatic moieties.


1985 ◽  
Vol 54 ◽  
Author(s):  
L. J. Brillson

ABSTRACTThe characterization of III-V compound semiconductor-metal interfaces by surface science techniques has led to new relationships between interfacial chemistry and Schottky barrier formation. These and recent results on ternary alloy III-V compounds suggest a greater control of Schottky barrier heights by atomic scale techniques and advanced III-V materials than previously believed.


2006 ◽  
Vol 527-529 ◽  
pp. 907-910
Author(s):  
Sergey P. Tumakha ◽  
L.M. Porter ◽  
D.J. Ewing ◽  
Qamar-ul Wahab ◽  
X.Y. Ma ◽  
...  

We have used depth-resolved cathodoluminescence spectroscopy (DRCLS) to correlate subsurface deep level emissions and double barrier current-voltage (I-V) characteristics across an array of Ni/4H-SiC diodes on the same epitaxial wafer. These results demonstrate not only a correspondence between these optical features and measured barrier heights, but they also suggest that such states may limit the range of SB heights in general. DRCLS of near-ideal diodes show a broad 2.45 eV emission at common to all diode areas and associated with either impurities or inclusions. Strongly non-ideal diodes exhibit additional defect emissions at 2.2 and 2.65 eV. On the other hand, there is no correlation between the appearance of morphological defects observed by polarized light microscopy or X-ray topography and the presence of double barrier characteristics. The DRCLS observations of defect level transitions that correlate with non-ideal Schottky barriers suggest that these sub-surface defect features can be used to predict Schottky barrier behavior.


2003 ◽  
Vol 58 (12) ◽  
pp. 691-702 ◽  
Author(s):  
C. Deibel ◽  
V. Dyakonov ◽  
J. Parisi

The changes of defect characteristics induced by accelerated lifetime tests on solar cells of the heterostructure ZnO/CdS/Cu(In,Ga)(S,Se)2/Mo are investigated. Encapsulated modules were shown to be stable against water vapor and oxygen under outdoor conditions, whereas the fill factor and open-circuit voltage of non-encapsulated test cells are reduced after prolonged damp heat treatment in the laboratory, leading to a reduced energy conversion efficiency. We subjected non-encapsulated test cells to extended damp heat exposure at 85 ◦C ambient temperature and 85% relative humidity for various time periods (6 h, 24 h, 144 h, 294 h, and 438 h). In order to understand the origin of the pronounced changes of the cells, we applied temperature-dependent current-voltage and capacitance voltage measurements, admittance spectroscopy, and deep-level transient spectroscopy. We observed the presence of electronic defect states which show an increasing activation energy due to damp heat exposure. The corresponding attempt-to-escape frequency and activation energy of these defect states obey the Meyer-Neldel relation. We conclude that the response originates from an energetically continuous distribution of defect states in the vicinity of the CdS/chalcopyrite interface. The increase in activation energy indicates a reduced band bending at the Cu(In,Ga)(S,Se)2 surface.We also observed changes in the bulk defect spectra due to the damp-heat treatment. - PACS: 73.20.hb, 73.61.Le


2011 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
Yu-Zhan Wang ◽  
Xing-Yu Gao ◽  
Andrew Wee ◽  
Dong-Chen Qi ◽  
Shi Chen

We investigate the interfacial electronic structures of the heterojunction Fe/pentacene/Fe on Cu(100) substrate, using synchrotron-based photoemission spectroscopy. No chemical reaction is observed at either Fe/pentacene or pentacene/Fe interface. The hole injection barrier was estimated to be about 0.95 eV between pentacene and under the Fe thin film. C K-edge NEXAFS revealed that the long axis of pentacene molecule was almost perpendicular to the surface plane. With increasing Fe thickness deposited on pentacene film, the pentacene's HOMO shifts to higher binding energy whereas the C 1s binding energy showed an interesting unusual behaviour due to the initial band bending gradually suppressed by the increasing core-hole screening effect.


2005 ◽  
Vol 483-485 ◽  
pp. 425-428 ◽  
Author(s):  
R.R Ciechonski ◽  
Samuele Porro ◽  
Mikael Syväjärvi ◽  
Rositza Yakimova

Specific on-resistance Ron estimated from current density-voltage characteristics of Schottky diodes on thick layers exhibits variations from tens of mW.cm2 to tens of W.cm2 for different doping levels. In order to understand the occurrence of high on-state resistance, Schottky barrier heights were first estimated for both forward and reverse bias with the application of thermionic emission theory and were in agreement with a literature reported values. Decrease in mobility with the temperature was observed and its dependencies of T–1.3 and T–2.0 for moderately doped and low doped samples respectively were estimated. From deep level measurements by Minority Carrier Transient Spectroscopy, an influence of shallow boron related levels and D-center on dependence of on-state resistance was observed, being more pronounced in low doped samples. Similar tendency was observed in depth profiling of Ron. This suggests a major role of boron in a compensation mechanism thus resulting in high Ron.


1992 ◽  
Vol 281 ◽  
Author(s):  
J. T. Hsieh ◽  
C. Y. Sun ◽  
H. L. Hwang

ABSTRACTA new surface passivation technique using P2S5/(NH4)2S on GaAs was investigated, and the results are compared with those of the (NH4)2Sx treatment. With this new surface treatment, the effective barrier heights for both Al- and Au—GaAs Schottky diodes were found to vary with the metal work functions, which is a clear evidence of the lower surface state density. Results of I—V measurements show that P2S5/(NH4)2S—passivated diodes have lower reverse leakage current and higher effective barrier height than those of the (NH4)2Sx -treated ones. Auger Electron Spectroscopy, X—ray photoelectron spectroscopy and Raman scattering measurements were done to characterize the surfaces including their compositions and surface band bending. In this paper, interpretations on this novel passivation effect is also provided.


Sign in / Sign up

Export Citation Format

Share Document