High Performance Silicon Carbide Power Modules for Extreme Environment Applications

2010 ◽  
Author(s):  
A. B. Lostetter ◽  
J. Hornberger ◽  
B. McPherson ◽  
R. Shaw ◽  
B. Reese ◽  
...  
2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000159-000166 ◽  
Author(s):  
J. Hornberger ◽  
B. McPherson ◽  
J. Bourne ◽  
R. Shaw ◽  
E. Cilio ◽  
...  

The demands of modern high-performance power electronics systems are rapidly surpassing the power density, efficiency, and reliability limitations defined by the intrinsic properties of silicon-based semiconductors. The advantages of silicon carbide (SiC) are well known, including high temperature operation, high voltage blocking capability, high speed switching, and high energy efficiency. In this discussion, APEI, Inc. presents two newly developed high performance SiC power modules for extreme environment systems and applications. These power modules are rated to 1200V, are operational at currents greater than 100A, can perform at temperatures in excess of 250 °C, and are designed to house various SiC devices, including MOSFETs, JFETs, or BJTs. One newly developed module is designed for high performance, ultra-high reliability systems such as aircraft and spacecraft, and features a hermetically sealed package with a ring seal technology capable of sustaining temperatures in excess of 400°C. The second module is designed for high performance commercial and industrial systems such as hybrid electric vehicles or renewable energy applications, implements a novel ultra-low parasitic packaging approach that enables high switching frequencies in excess of 100 kHz, and weighs in at just over 130 grams (offering ~5× mass reduction and ~3× size reduction in comparison with industry standard power brick packaging technology). It is configurable as either a half or full bridge converter. In this discussion, APEI, Inc. introduces these products and presents practical testing of each.


2012 ◽  
Vol 717-720 ◽  
pp. 1219-1224 ◽  
Author(s):  
Alexander B. Lostetter ◽  
J. Hornberger ◽  
B. McPherson ◽  
J. Bourne ◽  
R. Shaw ◽  
...  

The demands of modern high-performance power electronics systems are rapidly surpassing the power density, efficiency, and reliability limitations defined by the intrinsic properties of silicon-based semiconductors. The advantages of silicon carbide (SiC) are well known, including high temperature operation, high voltage blocking capability, high speed switching, and high energy efficiency. In this discussion, APEI, Inc. presents two newly developed high performance SiC power modules for extreme environment systems and applications. These power modules are rated to 1200V, are operational at currents greater than 100A, can perform at temperatures in excess of 250 °C, and are designed to house various SiC devices, including MOSFETs, JFETs, or BJTs.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000402-000406
Author(s):  
B. Passmore ◽  
J. Hornberger ◽  
B. McPherson ◽  
J. Bourne ◽  
R. Shaw ◽  
...  

A high temperature, high performance power module was developed for extreme environment systems and applications to exploit the advantages of wide bandgap semiconductors. These power modules are rated > 1200V, > 100A, > 250 °C, and are designed to house any SiC or GaN device. Characterization data of this power module housing trench MOSFETs is presented which demonstrates an on-state current of 1500 A for a full-bridge switch position. In addition, switching waveforms are presented that exhibit fast transition times.


2019 ◽  
Vol 283 ◽  
pp. 373-383 ◽  
Author(s):  
Satyendra Mourya ◽  
Arvind Kumar ◽  
Jyoti Jaiswal ◽  
Gaurav Malik ◽  
Brijesh Kumar ◽  
...  

2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000297-000304 ◽  
Author(s):  
B. Reese ◽  
B. McPherson ◽  
R. Shaw ◽  
J. Hornberger ◽  
R. Schupbach ◽  
...  

Arkansas Power Electronics International, Inc., in collaboration with the University of Arkansas and Rohm, Ltd., have developed a high-temperature, high-performance Silicon-Carbide (SiC) based power module with integrated gate driver. This paper presents a description of the single phase half-bridge module containing eight Rohm 30 A SiC DMOSFETs in parallel per switch position. The electrical and thermal performance of the system under power is also presented.


2012 ◽  
Vol 523-524 ◽  
pp. 287-292 ◽  
Author(s):  
Yasuhiro Okamoto ◽  
Yasuaki Kimura ◽  
Akira Okada ◽  
Yoshiyuki Uno ◽  
Jun Ohya ◽  
...  

Brittle materials, such as silicon, silicon carbide and sapphire have been conventionally sliced for wafers by a multi-wire saw method with slurry in industrial fields. Recently, the multi-wire saw method with a fixed diamond abrasive wire has been available as a commercial product at acceptable cost, and the high slicing performance is expected compared with the normal multi-wire saw method with slurry. However, there still remain some problems such as bad working environment with abrasives, cleaning cost of sliced wafers, crack generation on the sliced surface and a large kerf loss against a wafer thickness. On the other hand, the developed multi-wire EDM slicing method would accomplish the high performance slicing of silicon and silicon carbide with a narrow kerf width under a clean process environment. However, the thinner wire is challenging process with a normal round shape wire electrode. Therefore, the new wire electrode with track-shaped section was proposed in order to satisfy both the narrow kerf width and the high wire tension even in the case of thin wire electrode. In this study, the running control of wire electrode with a track-shaped section was experimentally investigated, and the possibility of proposed process was discussed.


2015 ◽  
Vol 51 (6) ◽  
pp. 4664-4676 ◽  
Author(s):  
Juan Colmenares ◽  
Dimosthenis Peftitsis ◽  
Jacek Rabkowski ◽  
Diane-Perle Sadik ◽  
Georg Tolstoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document